IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v441y2016icp121-130.html
   My bibliography  Save this article

Theory of feedback controlled brain stimulations for Parkinson’s disease

Author

Listed:
  • Sanzeni, A.
  • Celani, A.
  • Tiana, G.
  • Vergassola, M.

Abstract

Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson’s disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

Suggested Citation

  • Sanzeni, A. & Celani, A. & Tiana, G. & Vergassola, M., 2016. "Theory of feedback controlled brain stimulations for Parkinson’s disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 121-130.
  • Handle: RePEc:eee:phsmap:v:441:y:2016:i:c:p:121-130
    DOI: 10.1016/j.physa.2015.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115006743
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dietmar Plenz & Stephen T. Kital, 1999. "A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus," Nature, Nature, vol. 400(6745), pages 677-682, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Shuangming & Wei, Xile & Deng, Bin & Liu, Chen & Li, Huiyan & Wang, Jiang, 2018. "Efficient digital implementation of a conductance-based globus pallidus neuron and the dynamics analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 484-502.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Ying & Zhang, Honghui & Zhang, Liyuan & Wang, Qingyun, 2019. "Dynamical role of pedunculopntine nucleus stimulation on controlling Parkinson’s disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 834-848.
    2. Lior Tiroshi & Joshua A Goldberg, 2019. "Population dynamics and entrainment of basal ganglia pacemakers are shaped by their dendritic arbors," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-29, February.
    3. Rosalyn J Moran & Nicolas Mallet & Vladimir Litvak & Raymond J Dolan & Peter J Magill & Karl J Friston & Peter Brown, 2011. "Alterations in Brain Connectivity Underlying Beta Oscillations in Parkinsonism," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-15, August.
    4. Taku Hasegawa & Satomi Chiken & Kenta Kobayashi & Atsushi Nambu, 2022. "Subthalamic nucleus stabilizes movements by reducing neural spike variability in monkey basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:441:y:2016:i:c:p:121-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.