IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006782.html
   My bibliography  Save this article

Population dynamics and entrainment of basal ganglia pacemakers are shaped by their dendritic arbors

Author

Listed:
  • Lior Tiroshi
  • Joshua A Goldberg

Abstract

The theory of phase oscillators is an essential tool for understanding population dynamics of pacemaking neurons. GABAergic pacemakers in the substantia nigra pars reticulata (SNr), a main basal ganglia (BG) output nucleus, receive inputs from the direct and indirect pathways at distal and proximal regions of their dendritic arbors, respectively. We combine theory, optogenetic stimulation and electrophysiological experiments in acute brain slices to ask how dendritic properties impact the propensity of the various inputs, arriving at different locations along the dendrite, to recruit or entrain SNr pacemakers. By combining cable theory with sinusoidally-modulated optogenetic activation of either proximal somatodendritic regions or the entire somatodendritic arbor of SNr neurons, we construct an analytical model that accurately fits the empirically measured somatic current response to inputs arising from illuminating the soma and various portions of the dendritic field. We show that the extent of the dendritic tree that is illuminated generates measurable and systematic differences in the pacemaker’s phase response curve (PRC), causing a shift in its peak. Finally, we show that the divergent PRCs correctly predict differences in two major features of the collective dynamics of SNr neurons: the fidelity of population responses to sudden step-like changes in inputs; and the phase latency at which SNr neurons are entrained by rhythmic stimulation, which can occur in the BG under both physiological and pathophysiological conditions. Our novel method generates measurable and physiologically meaningful spatial effects, and provides the first empirical demonstration of how the collective responses of SNr pacemakers are determined by the transmission properties of their dendrites. SNr dendrites may serve to delay distal striatal inputs so that they impinge on the spike initiation zone simultaneously with pallidal and subthalamic inputs in order to guarantee a fair competition between the influence of the monosynaptic direct- and polysynaptic indirect pathways.Author summary: The substantia nigra pars reticulata (SNr) is a main output nucleus of the basal ganglia (BG), where inputs from the competing direct and indirect pathways converge onto the same neurons. Interestingly, these inputs are differentially distributed with direct and indirect pathway projections arriving at distal and proximal regions of the dendritic arbor, respectively. We employ a novel method combining theory with electrophysiological experiments and optogenetics to study the distinct effects of inputs arriving at different locations along the dendrite. Our approach represents a useful compromise between complexity and reduction in modelling. Our work addresses the question of high fidelity encoding of inputs by networks of neurons in the new context of pacemaking neurons, which are driven to fire by their intrinsic dynamics rather than by a network state. We provide the first empirical demonstration that dendritic delays can introduce latencies in the responses of a population of neurons that are commensurate with synaptic delays, suggesting a new role for SNr dendrites with implications for BG function.

Suggested Citation

  • Lior Tiroshi & Joshua A Goldberg, 2019. "Population dynamics and entrainment of basal ganglia pacemakers are shaped by their dendritic arbors," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-29, February.
  • Handle: RePEc:plo:pcbi00:1006782
    DOI: 10.1371/journal.pcbi.1006782
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006782
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006782&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dietmar Plenz & Stephen T. Kital, 1999. "A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus," Nature, Nature, vol. 400(6745), pages 677-682, August.
    2. Björn Naundorf & Fred Wolf & Maxim Volgushev, 2006. "Unique features of action potential initiation in cortical neurons," Nature, Nature, vol. 440(7087), pages 1060-1063, April.
    3. Charles J Wilson & David Barraza & Todd Troyer & Michael A Farries, 2014. "Predicting the Responses of Repetitively Firing Neurons to Current Noise," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Rueda & Itziar Fernández & Yolanda Larriba & Alejandro Rodríguez-Collado, 2021. "The FMM Approach to Analyze Biomedical Signals: Theory, Software, Applications and Future," Mathematics, MDPI, vol. 9(10), pages 1-13, May.
    2. Rosalyn J Moran & Nicolas Mallet & Vladimir Litvak & Raymond J Dolan & Peter J Magill & Karl J Friston & Peter Brown, 2011. "Alterations in Brain Connectivity Underlying Beta Oscillations in Parkinsonism," PLOS Computational Biology, Public Library of Science, vol. 7(8), pages 1-15, August.
    3. Robert C Cannon & Giampaolo D'Alessandro, 2006. "The Ion Channel Inverse Problem: Neuroinformatics Meets Biophysics," PLOS Computational Biology, Public Library of Science, vol. 2(8), pages 1-8, August.
    4. Paul M Harrison & Laurent Badel & Mark J Wall & Magnus J E Richardson, 2015. "Experimentally Verified Parameter Sets for Modelling Heterogeneous Neocortical Pyramidal-Cell Populations," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-23, August.
    5. Skander Mensi & Olivier Hagens & Wulfram Gerstner & Christian Pozzorini, 2016. "Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-38, February.
    6. Ahmed A Aldohbeyb & Jozsef Vigh & Kevin L Lear, 2021. "New methods for quantifying rapidity of action potential onset differentiate neuron types," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-20, April.
    7. Contoyiannis, Yiannis F. & Kosmidis, Efstratios K. & Diakonos, Fotios K. & Kampitakis, Myron & Potirakis, Stelios M., 2022. "A hybrid artificial neural network for the generation of critical fluctuations and inter-spike intervals," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    8. Sanzeni, A. & Celani, A. & Tiana, G. & Vergassola, M., 2016. "Theory of feedback controlled brain stimulations for Parkinson’s disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 121-130.
    9. Yu, Ying & Zhang, Honghui & Zhang, Liyuan & Wang, Qingyun, 2019. "Dynamical role of pedunculopntine nucleus stimulation on controlling Parkinson’s disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 834-848.
    10. Lucy J Colwell & Michael P Brenner, 2009. "Action Potential Initiation in the Hodgkin-Huxley Model," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-7, January.
    11. Jonathan Platkiewicz & Romain Brette, 2010. "A Threshold Equation for Action Potential Initiation," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-16, July.
    12. Taku Hasegawa & Satomi Chiken & Kenta Kobayashi & Atsushi Nambu, 2022. "Subthalamic nucleus stabilizes movements by reducing neural spike variability in monkey basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.