Open-channel microfluidics via resonant wireless power transfer
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-29405-2
Download full text from publisher
References listed on IDEAS
- Sang-Hyun Oh & Hatice Altug, 2018. "Performance metrics and enabling technologies for nanoplasmonic biosensors," Nature Communications, Nature, vol. 9(1), pages 1-5, December.
- Tom Krupenkin & J. Ashley Taylor, 2011. "Reverse electrowetting as a new approach to high-power energy harvesting," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
- Sang-Hyun Oh & Hatice Altug & Xiaojia Jin & Tony Low & Steven J. Koester & Aleksandar P. Ivanov & Joshua B. Edel & Phaedon Avouris & Michael S. Strano, 2021. "Nanophotonic biosensors harnessing van der Waals materials," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
- Robert A. Hayes & B. J. Feenstra, 2003. "Video-speed electronic paper based on electrowetting," Nature, Nature, vol. 425(6956), pages 383-385, September.
- Ronen Adato & Hatice Altug, 2013. "In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas," Nature Communications, Nature, vol. 4(1), pages 1-10, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhihao Ren & Zixuan Zhang & Jingxuan Wei & Bowei Dong & Chengkuo Lee, 2022. "Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Maryam Fatima & Junshan Lin, 2021. "Scattering resonances for a three-dimensional subwavelength hole," Partial Differential Equations and Applications, Springer, vol. 2(4), pages 1-25, August.
- María Rodríguez Fernández & Eduardo Zalama Casanova & Ignacio González Alonso, 2015. "Review of Display Technologies Focusing on Power Consumption," Sustainability, MDPI, vol. 7(8), pages 1-22, August.
- Fu, Hailing & Yeatman, Eric M., 2017. "A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion," Energy, Elsevier, vol. 125(C), pages 152-161.
- Maxim Glushenkov & Alexander Kronberg & Torben Knoke & Eugeny Y. Kenig, 2018. "Isobaric Expansion Engines: New Opportunities in Energy Conversion for Heat Engines, Pumps and Compressors," Energies, MDPI, vol. 11(1), pages 1-22, January.
- Jiangtao Lv & Yingjie Wu & Jingying Liu & Youning Gong & Guangyuan Si & Guangwei Hu & Qing Zhang & Yupeng Zhang & Jian-Xin Tang & Michael S. Fuhrer & Hongsheng Chen & Stefan A. Maier & Cheng-Wei Qiu &, 2023. "Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Hong Zhou & Zhihao Ren & Dongxiao Li & Cheng Xu & Xiaojing Mu & Chengkuo Lee, 2023. "Dynamic construction of refractive index-dependent vibrations using surface plasmon-phonon polaritons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Wijewardhana, K. Rohana & Shen, Tian-Zi & Song, Jang-Kun, 2017. "Energy harvesting using air bubbles on hydrophobic surfaces containing embedded charges," Applied Energy, Elsevier, vol. 206(C), pages 432-438.
- Wu, Xuan & Li, Guangyong & Lee, Dong-Weon, 2016. "A novel energy conversion method based on hydrogel material for self-powered sensor system applications," Applied Energy, Elsevier, vol. 173(C), pages 103-110.
- Kui Di & Kunwei Bao & Haojie Chen & Xinjun Xie & Jianbo Tan & Yixing Shao & Yongxiang Li & Wenjun Xia & Zisheng Xu & Shiju E, 2021. "Dielectric Elastomer Generator for Electromechanical Energy Conversion: A Mini Review," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
- Hu Shi & Zhaoying Liu & Xuesong Mei, 2019. "Overview of Human Walking Induced Energy Harvesting Technologies and Its Possibility for Walking Robotics," Energies, MDPI, vol. 13(1), pages 1-22, December.
- Christopher T. Ertsgaard & Minki Kim & Jungwon Choi & Sang-Hyun Oh, 2023. "Wireless dielectrophoresis trapping and remote impedance sensing via resonant wireless power transfer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Hua-Ju Shih, 2019. "An Analysis Model Combining Gamma-Type Stirling Engine and Power Converter," Energies, MDPI, vol. 12(7), pages 1-18, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29405-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.