IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3154.html
   My bibliography  Save this article

In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas

Author

Listed:
  • Ronen Adato

    (Insititute of Bioengineering, Ecole Polytechnique Federale De Lausanne (EPFL)
    Boston University)

  • Hatice Altug

    (Insititute of Bioengineering, Ecole Polytechnique Federale De Lausanne (EPFL)
    Boston University)

Abstract

Infrared absorption spectroscopy is a powerful biochemical analysis tool as it extracts detailed molecular structural information in a label-free fashion. Its molecular specificity renders the technique sensitive to the subtle conformational changes exhibited by proteins in response to a variety of stimuli. Yet, sensitivity limitations and the extremely strong absorption bands of liquid water severely limit infrared spectroscopy in performing kinetic measurements in biomolecules’ native, aqueous environments. Here we demonstrate a plasmonic chip-based technology that overcomes these challenges, enabling the in-situ monitoring of protein and nanoparticle interactions at high sensitivity in real time, even allowing the observation of minute volumes of water displacement during binding events. Our approach leverages the plasmonic enhancement of absorption bands in conjunction with a non-classical form of internal reflection. These features not only expand the reach of infrared spectroscopy to a new class of biological interactions but also additionally enable a unique chip-based technology.

Suggested Citation

  • Ronen Adato & Hatice Altug, 2013. "In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas," Nature Communications, Nature, vol. 4(1), pages 1-10, October.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3154
    DOI: 10.1038/ncomms3154
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3154
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhihao Ren & Zixuan Zhang & Jingxuan Wei & Bowei Dong & Chengkuo Lee, 2022. "Wavelength-multiplexed hook nanoantennas for machine learning enabled mid-infrared spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Christopher T. Ertsgaard & Daehan Yoo & Peter R. Christenson & Daniel J. Klemme & Sang-Hyun Oh, 2022. "Open-channel microfluidics via resonant wireless power transfer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.