IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9881-d628016.html
   My bibliography  Save this article

Dielectric Elastomer Generator for Electromechanical Energy Conversion: A Mini Review

Author

Listed:
  • Kui Di

    (College of Engineering, Zhejiang Normal University, Jinhua 321004, China
    Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Zhejiang 321005, China)

  • Kunwei Bao

    (College of Engineering, Zhejiang Normal University, Jinhua 321004, China
    Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Zhejiang 321005, China)

  • Haojie Chen

    (College of Engineering, Zhejiang Normal University, Jinhua 321004, China
    Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Zhejiang 321005, China)

  • Xinjun Xie

    (College of Engineering, Zhejiang Normal University, Jinhua 321004, China
    Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Zhejiang 321005, China)

  • Jianbo Tan

    (College of Engineering, Zhejiang Normal University, Jinhua 321004, China
    Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Zhejiang 321005, China)

  • Yixing Shao

    (College of Engineering, Zhejiang Normal University, Jinhua 321004, China
    Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Zhejiang 321005, China)

  • Yongxiang Li

    (College of Engineering, Zhejiang Normal University, Jinhua 321004, China
    Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Zhejiang 321005, China)

  • Wenjun Xia

    (College of Engineering, Zhejiang Normal University, Jinhua 321004, China
    Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Zhejiang 321005, China)

  • Zisheng Xu

    (College of Engineering, Zhejiang Normal University, Jinhua 321004, China
    Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Zhejiang 321005, China)

  • Shiju E

    (College of Engineering, Zhejiang Normal University, Jinhua 321004, China
    Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Zhejiang Normal University, Zhejiang 321005, China)

Abstract

The dielectric elastomer generator (DEG) has attracted attention in converting mechanical energy into electrical energy, due to its high energy density, fast response, and light weight, which together make DEG a promising technology for electromechanical conversion. In this article, recent research papers on DEG are reviewed. First, we present the working principles, parameters, materials, and deformation modes of DEG. Then, we introduce DEG prototypes in the field of collecting mechanical energy, including small-scale applications for wind energy and human motion energy, and large-scale applications for wave energy. At the end of the review, we discuss the challenges and perspectives of DEG. We believe that DEG will play an important role in mechanical energy harvesting in the future.

Suggested Citation

  • Kui Di & Kunwei Bao & Haojie Chen & Xinjun Xie & Jianbo Tan & Yixing Shao & Yongxiang Li & Wenjun Xia & Zisheng Xu & Shiju E, 2021. "Dielectric Elastomer Generator for Electromechanical Energy Conversion: A Mini Review," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9881-:d:628016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Peng & Zhu, Liangquan & Zhu, Zicai & Chen, Hualing & Chen, Wei & Hu, Hong, 2021. "Predicting energy harvesting performance of a random nonlinear dielectric elastomer pendulum," Applied Energy, Elsevier, vol. 289(C).
    2. Tom Krupenkin & J. Ashley Taylor, 2011. "Reverse electrowetting as a new approach to high-power energy harvesting," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    3. Moretti, Giacomo & Santos Herran, Miguel & Forehand, David & Alves, Marco & Jeffrey, Henry & Vertechy, Rocco & Fontana, Marco, 2020. "Advances in the development of dielectric elastomer generators for wave energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Moretti, Giacomo & Malara, Giovanni & Scialò, Andrea & Daniele, Luca & Romolo, Alessandra & Vertechy, Rocco & Fontana, Marco & Arena, Felice, 2020. "Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator," Renewable Energy, Elsevier, vol. 146(C), pages 628-642.
    5. Fan, Kangqi & Zhang, Yiwei & Liu, Haiyan & Cai, Meiling & Tan, Qinxue, 2019. "A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions," Renewable Energy, Elsevier, vol. 138(C), pages 292-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seiki Chiba & Mikio Waki, 2022. "Possibility of a Portable Power Generator Using Dielectric Elastomers and a Charging System for Secondary Batteries," Energies, MDPI, vol. 15(16), pages 1-17, August.
    2. Lai, Zhihui & Xu, Junchen & Fang, Shitong & Qiao, Zijian & Wang, Suo & Wang, Chen & Huang, Zhangjun & Zhou, Shengxi, 2023. "Energy harvesting from a hybrid piezo-dielectric vibration energy harvester with a self-priming circuit," Energy, Elsevier, vol. 273(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Collins, Ieuan & Hossain, Mokarram & Dettmer, Wulf & Masters, Ian, 2021. "Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Lai, Zhihui & Xu, Junchen & Fang, Shitong & Qiao, Zijian & Wang, Suo & Wang, Chen & Huang, Zhangjun & Zhou, Shengxi, 2023. "Energy harvesting from a hybrid piezo-dielectric vibration energy harvester with a self-priming circuit," Energy, Elsevier, vol. 273(C).
    3. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
    4. Zhou, Yu & Ning, Dezhi & Liang, Dongfang & Cai, Shuqun, 2021. "Nonlinear hydrodynamic analysis of an offshore oscillating water column wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Li, Zhongjie & Jiang, Xiaomeng & Xu, Wanqing & Gong, Ying & Peng, Yan & Zhong, Songyi & Xie, Shaorong, 2022. "Performance comparison of electromagnetic generators based on different circular magnet arrangements," Energy, Elsevier, vol. 258(C).
    6. Tan, Qinxue & Fan, Kangqi & Guo, Jiyuan & Wen, Tao & Gao, Libo & Zhou, Shengxi, 2021. "A cantilever-driven rotor for efficient vibration energy harvesting," Energy, Elsevier, vol. 235(C).
    7. Gu, Yuhan & Liu, Weiqun & Zhao, Caiyou & Wang, Ping, 2020. "A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting," Applied Energy, Elsevier, vol. 266(C).
    8. Abad, Farhad & Lotfian, Saeid & Dai, Saishuai & Zhao, Guangwei & Alarcon, Guillermo Idarraga & Yang, Liu & Huang, Yang & Xiao, Qing & Brennan, Feargal, 2024. "Experimental and computational analysis of elastomer membranes used in oscillating water column WECs," Renewable Energy, Elsevier, vol. 226(C).
    9. Scialò, A. & Henriques, J.C.C. & Malara, G. & Falcão, A.F.O. & Gato, L.M.C. & Arena, F., 2021. "Power take-off selection for a fixed U-OWC wave power plant in the Mediterranean Sea: The case of Roccella Jonica," Energy, Elsevier, vol. 215(PA).
    10. Evangelia Dialyna & Theocharis Tsoutsos, 2021. "Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects," Energies, MDPI, vol. 14(16), pages 1-18, August.
    11. Sani, Godwin & Balaram, Bipin & Kudra, Grzegorz & Awrejcewicz, Jan, 2024. "Energy harvesting from friction-induced vibrations in vehicle braking systems in the presence of rotary unbalances," Energy, Elsevier, vol. 289(C).
    12. Fu, Hailing & Yeatman, Eric M., 2017. "A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion," Energy, Elsevier, vol. 125(C), pages 152-161.
    13. Cotten, A. & Kurniawan, A. & Neary, V.S. & Coe, R.G. & Bacelli, G., 2024. "A compressible degree of freedom as a means for improving the performance of heaving wave energy converters," Renewable Energy, Elsevier, vol. 227(C).
    14. Christopher T. Ertsgaard & Daehan Yoo & Peter R. Christenson & Daniel J. Klemme & Sang-Hyun Oh, 2022. "Open-channel microfluidics via resonant wireless power transfer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    16. Zhijie Feng & Han Peng & Yong Chen, 2021. "A Dual Resonance Electromagnetic Vibration Energy Harvester for Wide Harvested Frequency Range with Enhanced Output Power," Energies, MDPI, vol. 14(22), pages 1-15, November.
    17. Peng, Yan & Xu, Zhibing & Wang, Min & Li, Zhongjie & Peng, Jinlin & Luo, Jun & Xie, Shaorong & Pu, Huayan & Yang, Zhengbao, 2021. "Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators," Renewable Energy, Elsevier, vol. 172(C), pages 551-563.
    18. Oikonomou, Charikleia L.G. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Unveiling the potential of using a spar-buoy oscillating-water-column wave energy converter for low-power stand-alone applications," Applied Energy, Elsevier, vol. 292(C).
    19. Maxim Glushenkov & Alexander Kronberg & Torben Knoke & Eugeny Y. Kenig, 2018. "Isobaric Expansion Engines: New Opportunities in Energy Conversion for Heat Engines, Pumps and Compressors," Energies, MDPI, vol. 11(1), pages 1-22, January.
    20. Ghodsi, Mojtaba & Ziaiefar, Hamidreza & Mohammadzaheri, Morteza & Al-Yahmedi, Amur, 2019. "Modeling and characterization of permendur cantilever beam for energy harvesting," Energy, Elsevier, vol. 176(C), pages 561-569.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9881-:d:628016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.