IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v425y2003i6956d10.1038_nature01988.html
   My bibliography  Save this article

Video-speed electronic paper based on electrowetting

Author

Listed:
  • Robert A. Hayes

    (Philips Research Eindhoven)

  • B. J. Feenstra

    (Philips Research Eindhoven)

Abstract

In recent years, a number of different technologies have been proposed for use in reflective displays1,2,3. One of the most appealing applications of a reflective display is electronic paper, which combines the desirable viewing characteristics of conventional printed paper with the ability to manipulate the displayed information electronically. Electronic paper based on the electrophoretic motion of particles inside small capsules has been demonstrated1 and commercialized; but the response speed of such a system is rather slow, limited by the velocity of the particles. Recently, we have demonstrated that electrowetting is an attractive technology for the rapid manipulation of liquids on a micrometre scale4. Here we show that electrowetting can also be used to form the basis of a reflective display that is significantly faster than electrophoretic displays, so that video content can be displayed. Our display principle utilizes the voltage-controlled movement of a coloured oil film adjacent to a white substrate. The reflectivity and contrast of our system approach those of paper. In addition, we demonstrate a colour concept, which is intrinsically four times brighter than reflective liquid-crystal displays5 and twice as bright as other emerging technologies1,2,3. The principle of microfluidic motion at low voltages is applicable in a wide range of electro-optic devices.

Suggested Citation

  • Robert A. Hayes & B. J. Feenstra, 2003. "Video-speed electronic paper based on electrowetting," Nature, Nature, vol. 425(6956), pages 383-385, September.
  • Handle: RePEc:nat:nature:v:425:y:2003:i:6956:d:10.1038_nature01988
    DOI: 10.1038/nature01988
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01988
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01988?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María Rodríguez Fernández & Eduardo Zalama Casanova & Ignacio González Alonso, 2015. "Review of Display Technologies Focusing on Power Consumption," Sustainability, MDPI, vol. 7(8), pages 1-22, August.
    2. Christopher T. Ertsgaard & Daehan Yoo & Peter R. Christenson & Daniel J. Klemme & Sang-Hyun Oh, 2022. "Open-channel microfluidics via resonant wireless power transfer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:425:y:2003:i:6956:d:10.1038_nature01988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.