IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28987-1.html
   My bibliography  Save this article

Oxo dicopper anchored on carbon nitride for selective oxidation of methane

Author

Listed:
  • Pengfei Xie

    (Johns Hopkins University
    Zhejiang University)

  • Jing Ding

    (Johns Hopkins University
    Nanjing Tech University)

  • Zihao Yao

    (Zhejiang University of Technology)

  • Tiancheng Pu

    (Johns Hopkins University)

  • Peng Zhang

    (Zhengzhou University)

  • Zhennan Huang

    (University of Illinois)

  • Canhui Wang

    (Johns Hopkins University)

  • Junlei Zhang

    (Johns Hopkins University)

  • Noah Zecher-Freeman

    (Johns Hopkins University)

  • Han Zong

    (Johns Hopkins University)

  • Dashui Yuan

    (Nanjing Tech University)

  • Shengwei Deng

    (Zhejiang University of Technology)

  • Reza Shahbazian-Yassar

    (University of Illinois)

  • Chao Wang

    (Johns Hopkins University)

Abstract

Selective conversion of methane (CH4) into value-added chemicals represents a grand challenge for the efficient utilization of rising hydrocarbon sources. We report here dimeric copper centers supported on graphitic carbon nitride (denoted as Cu2@C3N4) as advanced catalysts for CH4 partial oxidation. The copper-dimer catalysts demonstrate high selectivity for partial oxidation of methane under both thermo- and photocatalytic reaction conditions, with hydrogen peroxide (H2O2) and oxygen (O2) being used as the oxidizer, respectively. In particular, the photocatalytic oxidation of CH4 with O2 achieves >10% conversion, and >98% selectivity toward methyl oxygenates and a mass-specific activity of 1399.3 mmol g Cu−1h−1. Mechanistic studies reveal that the high reactivity of Cu2@C3N4 can be ascribed to symphonic mechanisms among the bridging oxygen, the two copper sites and the semiconducting C3N4 substrate, which do not only facilitate the heterolytic scission of C-H bond, but also promotes H2O2 and O2 activation in thermo- and photocatalysis, respectively.

Suggested Citation

  • Pengfei Xie & Jing Ding & Zihao Yao & Tiancheng Pu & Peng Zhang & Zhennan Huang & Canhui Wang & Junlei Zhang & Noah Zecher-Freeman & Han Zong & Dashui Yuan & Shengwei Deng & Reza Shahbazian-Yassar & C, 2022. "Oxo dicopper anchored on carbon nitride for selective oxidation of methane," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28987-1
    DOI: 10.1038/s41467-022-28987-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28987-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28987-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laihao Luo & Jie Luo & Hongliang Li & Fangning Ren & Yifei Zhang & Andong Liu & Wei-Xue Li & Jie Zeng, 2021. "Water enables mild oxidation of methane to methanol on gold single-atom catalysts," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Junjun Shan & Mengwei Li & Lawrence F. Allard & Sungsik Lee & Maria Flytzani-Stephanopoulos, 2017. "Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts," Nature, Nature, vol. 551(7682), pages 605-608, November.
    3. Sebastian Grundner & Monica A.C. Markovits & Guanna Li & Moniek Tromp & Evgeny A. Pidko & Emiel J.M. Hensen & Andreas Jentys & Maricruz Sanchez-Sanchez & Johannes A. Lercher, 2015. "Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yurui Fan & Haomiao Xu & Guanqun Gao & Mingming Wang & Wenjun Huang & Lei Ma & Yancai Yao & Zan Qu & Pengfei Xie & Bin Dai & Naiqiang Yan, 2024. "Asymmetric Ru-In atomic pairs promote highly active and stable acetylene hydrochlorination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jiwon Kim & Jae Hyung Kim & Cheoulwoo Oh & Hyewon Yun & Eunchong Lee & Hyung-Suk Oh & Jong Hyeok Park & Yun Jeong Hwang, 2023. "Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H2O2 under ambient conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Xinzhe Tian & Yinggang Guo & Wankai An & Yun-Lai Ren & Yuchen Qin & Caoyuan Niu & Xin Zheng, 2022. "Coupling photocatalytic water oxidation with reductive transformations of organic molecules," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiwon Kim & Jae Hyung Kim & Cheoulwoo Oh & Hyewon Yun & Eunchong Lee & Hyung-Suk Oh & Jong Hyeok Park & Yun Jeong Hwang, 2023. "Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H2O2 under ambient conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Luning Chen & Pragya Verma & Kaipeng Hou & Zhiyuan Qi & Shuchen Zhang & Yi-Sheng Liu & Jinghua Guo & Vitalie Stavila & Mark D. Allendorf & Lansun Zheng & Miquel Salmeron & David Prendergast & Gabor A., 2022. "Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single-site platinum catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Bin Li & Jiali Mu & Guifa Long & Xiangen Song & Ende Huang & Siyue Liu & Yao Wei & Fanfei Sun & Siquan Feng & Qiao Yuan & Yutong Cai & Jian Song & Wenrui Dong & Weiqing Zhang & Xueming Yang & Li Yan &, 2024. "Water-participated mild oxidation of ethane to acetaldehyde," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Mohamedali, Mohanned & Ayodele, Olumide & Ibrahim, Hussameldin, 2020. "Challenges and prospects for the photocatalytic liquefaction of methane into oxygenated hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Manav Chauhan & Bharti Rana & Poorvi Gupta & Rahul Kalita & Chhaya Thadhani & Kuntal Manna, 2024. "Tailored pore-confined single-site iron(III) catalyst for selective CH4 oxidation to CH3OH or CH3CO2H using O2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Jingyi Yang & Yike Huang & Haifeng Qi & Chaobin Zeng & Qike Jiang & Yitao Cui & Yang Su & Xiaorui Du & Xiaoli Pan & Xiaoyan Liu & Weizhen Li & Botao Qiao & Aiqin Wang & Tao Zhang, 2022. "Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Peng Rao & Yijie Deng & Wenjun Fan & Junming Luo & Peilin Deng & Jing Li & Yijun Shen & Xinlong Tian, 2022. "Movable type printing method to synthesize high-entropy single-atom catalysts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Philipp Keller & Michael A. Reiter & Patrick Kiefer & Thomas Gassler & Lucas Hemmerle & Philipp Christen & Elad Noor & Julia A. Vorholt, 2022. "Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Yueshan Xu & Daoxiong Wu & Qinghua Zhang & Peng Rao & Peilin Deng & Mangen Tang & Jing Li & Yingjie Hua & Chongtai Wang & Shengkui Zhong & Chunman Jia & Zhongxin Liu & Yijun Shen & Lin Gu & Xinlong Ti, 2024. "Regulating Au coverage for the direct oxidation of methane to methanol," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Ashwani Kumar & Viet Q. Bui & Jinsun Lee & Lingling Wang & Amol R. Jadhav & Xinghui Liu & Xiaodong Shao & Yang Liu & Jianmin Yu & Yosep Hwang & Huong T. D. Bui & Sara Ajmal & Min Gyu Kim & Seong-Gon K, 2021. "Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. Chengyang Feng & Shouwei Zuo & Miao Hu & Yuanfu Ren & Liwei Xia & Jun Luo & Chen Zou & Sibo Wang & Yihan Zhu & Magnus Rueping & Yu Han & Huabin Zhang, 2024. "Optimizing the reaction pathway of methane photo-oxidation over single copper sites," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Xinxuan Duan & Qihao Sha & Pengsong Li & Tianshui Li & Guotao Yang & Wei Liu & Ende Yu & Daojin Zhou & Jinjie Fang & Wenxing Chen & Yizhen Chen & Lirong Zheng & Jiangwen Liao & Zeyu Wang & Yaping Li &, 2024. "Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Hailong Zhang & Peijie Han & Danfeng Wu & Congcong Du & Jiafei Zhao & Kelvin H. L. Zhang & Jingdong Lin & Shaolong Wan & Jianyu Huang & Shuai Wang & Haifeng Xiong & Yong Wang, 2023. "Confined Cu-OH single sites in SSZ-13 zeolite for the direct oxidation of methane to methanol," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Huaning Jiang & Weiwei Yang & Mingquan Xu & Erqing Wang & Yi Wei & Wei Liu & Xiaokang Gu & Lixuan Liu & Qian Chen & Pengbo Zhai & Xiaolong Zou & Pulickel M. Ajayan & Wu Zhou & Yongji Gong, 2022. "Single atom catalysts in Van der Waals gaps," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Lei Luo & Xiaoyu Han & Keran Wang & Youxun Xu & Lunqiao Xiong & Jiani Ma & Zhengxiao Guo & Junwang Tang, 2023. "Nearly 100% selective and visible-light-driven methane conversion to formaldehyde via. single-atom Cu and Wδ+," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Xiao Sun & Xuanye Chen & Cong Fu & Qingbo Yu & Xu-Sheng Zheng & Fei Fang & Yuanxu Liu & Junfa Zhu & Wenhua Zhang & Weixin Huang, 2022. "Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Wenqing Zhang & Dawei Xi & Yihong Chen & Aobo Chen & Yawen Jiang & Hengjie Liu & Zeyu Zhou & Hui Zhang & Zhi Liu & Ran Long & Yujie Xiong, 2023. "Light-driven flow synthesis of acetic acid from methane with chemical looping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28987-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.