IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46140-y.html
   My bibliography  Save this article

Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis

Author

Listed:
  • Xinxuan Duan

    (Beijing University of Chemical Technology
    Nanyang Technological University)

  • Qihao Sha

    (Beijing University of Chemical Technology)

  • Pengsong Li

    (Chinese Academy of Sciences)

  • Tianshui Li

    (Beijing University of Chemical Technology)

  • Guotao Yang

    (Beijing University of Chemical Technology)

  • Wei Liu

    (Beijing University of Chemical Technology)

  • Ende Yu

    (Research Institute of Tsinghua University in Shenzhen)

  • Daojin Zhou

    (Beijing University of Chemical Technology)

  • Jinjie Fang

    (Beijing University of Chemical Technology)

  • Wenxing Chen

    (Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology)

  • Yizhen Chen

    (University of Science and Technology of China)

  • Lirong Zheng

    (Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences)

  • Jiangwen Liao

    (Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences)

  • Zeyu Wang

    (Tsinghua University)

  • Yaping Li

    (Beijing University of Chemical Technology)

  • Hongbin Yang

    (City University of Hong Kong)

  • Guoxin Zhang

    (Shandong University of Science and Technology)

  • Zhongbin Zhuang

    (Beijing University of Chemical Technology
    Beijing University of Chemical Technology)

  • Sung-Fu Hung

    (National Yang Ming Chiao Tung University)

  • Changfei Jing

    (Tianjin University of Technology)

  • Jun Luo

    (University of Electronic Science and Technology of China)

  • Lu Bai

    (CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology)

  • Juncai Dong

    (Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences)

  • Hai Xiao

    (Tsinghua University)

  • Wen Liu

    (Beijing University of Chemical Technology)

  • Yun Kuang

    (Beijing University of Chemical Technology
    Research Institute of Tsinghua University in Shenzhen)

  • Bin Liu

    (City University of Hong Kong
    City University of Hong Kong)

  • Xiaoming Sun

    (Beijing University of Chemical Technology)

Abstract

Seawater electrolysis offers a renewable, scalable, and economic means for green hydrogen production. However, anode corrosion by Cl- pose great challenges for its commercialization. Herein, different from conventional catalysts designed to repel Cl- adsorption, we develop an atomic Ir catalyst on cobalt iron layered double hydroxide (Ir/CoFe-LDH) to tailor Cl- adsorption and modulate the electronic structure of the Ir active center, thereby establishing a unique Ir-OH/Cl coordination for alkaline seawater electrolysis. Operando characterizations and theoretical calculations unveil the pivotal role of this coordination state to lower OER activation energy by a factor of 1.93. The Ir/CoFe-LDH exhibits a remarkable oxygen evolution reaction activity (202 mV overpotential and TOF = 7.46 O2 s−1) in 6 M NaOH+2.8 M NaCl, superior over Cl--free 6 M NaOH electrolyte (236 mV overpotential and TOF = 1.05 O2 s−1), with 100% catalytic selectivity and stability at high current densities (400-800 mA cm−2) for more than 1,000 h.

Suggested Citation

  • Xinxuan Duan & Qihao Sha & Pengsong Li & Tianshui Li & Guotao Yang & Wei Liu & Ende Yu & Daojin Zhou & Jinjie Fang & Wenxing Chen & Yizhen Chen & Lirong Zheng & Jiangwen Liao & Zeyu Wang & Yaping Li &, 2024. "Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46140-y
    DOI: 10.1038/s41467-024-46140-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46140-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46140-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pengsong Li & Maoyu Wang & Xinxuan Duan & Lirong Zheng & Xiaopeng Cheng & Yuefei Zhang & Yun Kuang & Yaping Li & Qing Ma & Zhenxing Feng & Wen Liu & Xiaoming Sun, 2019. "Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Junjun Shan & Mengwei Li & Lawrence F. Allard & Sungsik Lee & Maria Flytzani-Stephanopoulos, 2017. "Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts," Nature, Nature, vol. 551(7682), pages 605-608, November.
    3. Heping Xie & Zhiyu Zhao & Tao Liu & Yifan Wu & Cheng Lan & Wenchuan Jiang & Liangyu Zhu & Yunpeng Wang & Dongsheng Yang & Zongping Shao, 2022. "A membrane-based seawater electrolyser for hydrogen generation," Nature, Nature, vol. 612(7941), pages 673-678, December.
    4. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    5. Yong-Tae Kim & Pietro Papa Lopes & Shin-Ae Park & A-Yeong Lee & Jinkyu Lim & Hyunjoo Lee & Seoin Back & Yousung Jung & Nemanja Danilovic & Vojislav Stamenkovic & Jonah Erlebacher & Joshua Snyder & Nen, 2017. "Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    6. J. Tyler Mefford & Andrew R. Akbashev & Minkyung Kang & Cameron L. Bentley & William E. Gent & Haitao D. Deng & Daan Hein Alsem & Young-Sang Yu & Norman J. Salmon & David A. Shapiro & Patrick R. Unwin, 2021. "Correlative operando microscopy of oxygen evolution electrocatalysts," Nature, Nature, vol. 593(7857), pages 67-73, May.
    7. Kang Jiang & Min Luo & Ming Peng & Yaqian Yu & Ying-Rui Lu & Ting-Shan Chan & Pan Liu & Frank M. F. Groot & Yongwen Tan, 2020. "Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengyun Hou & Lirong Zheng & Di Zhao & Xin Tan & Wuyi Feng & Jiantao Fu & Tianxin Wei & Minhua Cao & Jiatao Zhang & Chen Chen, 2024. "Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Siliu Lyu & Chenxi Guo & Jianing Wang & Zhongjian Li & Bin Yang & Lecheng Lei & Liping Wang & Jianping Xiao & Tao Zhang & Yang Hou, 2022. "Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Dongpeng Zhang & Yanxiao Li & Pengfei Wang & Jinyong Qu & Yi Li & Sihui Zhan, 2023. "Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Yiming Zhu & Jiaao Wang & Toshinari Koketsu & Matthias Kroschel & Jin-Ming Chen & Su-Yang Hsu & Graeme Henkelman & Zhiwei Hu & Peter Strasser & Jiwei Ma, 2022. "Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    6. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    8. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    9. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    10. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    11. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    13. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    14. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    15. Ewa C. E. Rönnebro & Greg Whyatt & Michael Powell & Matthew Westman & Feng (Richard) Zheng & Zhigang Zak Fang, 2015. "Metal Hydrides for High-Temperature Power Generation," Energies, MDPI, vol. 8(8), pages 1-25, August.
    16. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    17. Chang, Chih-Chang & Huang, Wei-Hao & Mai, Van-Phung & Tsai, Jia-Shiuan & Yang, Ruey-Jen, 2021. "Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide," Energy, Elsevier, vol. 229(C).
    18. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    19. Wang, Jiayu, 2016. "Do light vehicle emissions standards promote environmental goals in Australia?," Conference papers 332692, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46140-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.