IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38007-5.html
   My bibliography  Save this article

A high-temperature double perovskite molecule-based antiferroelectric with excellent anti-breakdown capacity for energy storage

Author

Listed:
  • Yi Liu

    (Chinese Academy of Sciences)

  • Yu Ma

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Xi Zeng

    (Chinese Academy of Sciences)

  • Haojie Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Wuqian Guo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Beibei Wang

    (Chinese Academy of Sciences)

  • Lina Hua

    (Chinese Academy of Sciences)

  • Liwei Tang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Junhua Luo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences, Chinese Academy of Sciences)

  • Zhihua Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences, Chinese Academy of Sciences
    Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China)

Abstract

Halide double perovskites have recently emerged as an environmentally green candidate toward electronic and optoelectronic applications owing to their non-toxicity and versatile physical merits, whereas study on high-temperature antiferroelectric (AFE) with excellent anti-breakdown property remains a huge blank in this booming family. Herein, we present the first high-temperature AFE of the lead-free halide double perovskites, (CHMA)2CsAgBiBr7 (1, where CHMA+ is cyclohexylmethylammonium), by incorporating a flexible organic spacer cation. The typical double P-E hysteresis loops and J-E curves reveal its concrete high-temperature AFE behaviors, giving large polarizations of ~4.2 μC/cm2 and a high Curie temperature of 378 K. Such merits are on the highest level of molecular AFE materials. Particularly, the dynamic motional ordering of CHMA+ cation contributes to the formation of antipolar alignment and high electric breakdown field strength up to ~205 kV/cm with fatigue endurance over 104 cycles, almost outperforming the vast majority of molecule counterparts. This is the first demonstration of high-temperature AFE properties in the halide double perovskites, which will promote the exploration of new “green” candidates for anti-breakdown energy storage capacitor.

Suggested Citation

  • Yi Liu & Yu Ma & Xi Zeng & Haojie Xu & Wuqian Guo & Beibei Wang & Lina Hua & Liwei Tang & Junhua Luo & Zhihua Sun, 2023. "A high-temperature double perovskite molecule-based antiferroelectric with excellent anti-breakdown capacity for energy storage," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38007-5
    DOI: 10.1038/s41467-023-38007-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38007-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38007-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. K. Tagantsev & K. Vaideeswaran & S. B. Vakhrushev & A. V. Filimonov & R. G. Burkovsky & A. Shaganov & D. Andronikova & A. I. Rudskoy & A. Q. R. Baron & H. Uchiyama & D. Chernyshov & A. Bosak & Z. U, 2013. "The origin of antiferroelectricity in PbZrO3," Nature Communications, Nature, vol. 4(1), pages 1-8, October.
    2. Eric Bousquet & Matthew Dawber & Nicolas Stucki & Céline Lichtensteiger & Patrick Hermet & Stefano Gariglio & Jean-Marc Triscone & Philippe Ghosez, 2008. "Improper ferroelectricity in perovskite oxide artificial superlattices," Nature, Nature, vol. 452(7188), pages 732-736, April.
    3. Yunxia Zhang & Yucheng Liu & Zhuo Xu & Haochen Ye & Zhou Yang & Jiaxue You & Ming Liu & Yihui He & Mercouri G. Kanatzidis & Shengzhong (Frank) Liu, 2020. "Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jincong Pang & Haodi Wu & Hao Li & Tong Jin & Jiang Tang & Guangda Niu, 2024. "Reconfigurable perovskite X-ray detector for intelligent imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Fengrui Sui & Min Jin & Yuanyuan Zhang & Ruijuan Qi & Yu-Ning Wu & Rong Huang & Fangyu Yue & Junhao Chu, 2023. "Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Robert A. Jagt & Ivona Bravić & Lissa Eyre & Krzysztof Gałkowski & Joanna Borowiec & Kavya Reddy Dudipala & Michał Baranowski & Mateusz Dyksik & Tim W. J. Goor & Theo Kreouzis & Ming Xiao & Adrian Bev, 2023. "Layered BiOI single crystals capable of detecting low dose rates of X-rays," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Yurou Zhang & Miaoqiang Lyu & Tengfei Qiu & Ekyu Han & Il Ku Kim & Min-Cherl Jung & Yun Hau Ng & Jung-Ho Yun & Lianzhou Wang, 2020. "Halide Perovskite Single Crystals: Optoelectronic Applications and Strategical Approaches," Energies, MDPI, vol. 13(16), pages 1-27, August.
    5. Zhengqian Fu & Xuefeng Chen & Henchang Nie & Yanyu Liu & Jiawang Hong & Tengfei Hu & Ziyi Yu & Zhenqin Li & Linlin Zhang & Heliang Yao & Yuanhua Xia & Zhipeng Gao & Zheyi An & Nan Zhang & Fei Cao & He, 2022. "Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O3," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Chao Yang & Rebecca Pons & Wilfried Sigle & Hongguang Wang & Eva Benckiser & Gennady Logvenov & Bernhard Keimer & Peter A. Aken, 2024. "Direct observation of strong surface reconstruction in partially reduced nickelate films," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Lutao Li & Junjie Yao & Juntong Zhu & Yuan Chen & Chen Wang & Zhicheng Zhou & Guoxiang Zhao & Sihan Zhang & Ruonan Wang & Jiating Li & Xiangyi Wang & Zheng Lu & Lingbo Xiao & Qiang Zhang & Guifu Zou, 2023. "Colloid driven low supersaturation crystallization for atomically thin Bismuth halide perovskite," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Michael Hoffmann & Zheng Wang & Nujhat Tasneem & Ahmad Zubair & Prasanna Venkatesan Ravindran & Mengkun Tian & Anthony Arthur Gaskell & Dina Triyoso & Steven Consiglio & Kandabara Tapily & Robert Clar, 2022. "Antiferroelectric negative capacitance from a structural phase transition in zirconia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Renzhong Zhuang & Songhua Cai & Zengxia Mei & Huili Liang & Ningjiu Zhao & Haoran Mu & Wenzhi Yu & Yan Jiang & Jian Yuan & Shuping Lau & Shiming Deng & Mingyue Han & Peng Jin & Cailin Wang & Guangyu Z, 2023. "Solution-grown BiI/BiI3 van der Waals heterostructures for sensitive X-ray detection," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Fabio Orlandi & Davide Delmonte & Gianluca Calestani & Enrico Cavalli & Edmondo Gilioli & Vladimir V. Shvartsman & Patrizio Graziosi & Stefano Rampino & Giulia Spaggiari & Chao Liu & Wei Ren & Silvia , 2022. "γ-BaFe2O4: a fresh playground for room temperature multiferroicity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Dou Zhao & Ruiling Gao & Wei Cheng & Mengyao Wen & Xinlei Zhang & Tomoyuki Yokota & Paul Sellin & Shengyuan A. Yang & Li Shang & Chongjian Zhou & Takao Someya & Wanqi Jie & Yadong Xu, 2024. "Heavy-to-light electron transition enabling real-time spectra detection of charged particles by a biocompatible semiconductor," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Peng Jin & Yingjie Tang & Dingwei Li & Yan Wang & Peng Ran & Chuanyu Zhou & Ye Yuan & Wenjuan Zhu & Tianyu Liu & Kun Liang & Cuifang Kuang & Xu Liu & Bowen Zhu & Yang (Michael) Yang, 2023. "Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Chen Lin & Zijun Zhang & Zhenbang Dai & Mengjiao Wu & Shi Liu & Jialu Chen & Chenqiang Hua & Yunhao Lu & Fei Zhang & Hongbo Lou & Hongliang Dong & Qiaoshi Zeng & Jing Ma & Xiaodong Pi & Dikui Zhou & Y, 2023. "Solution epitaxy of polarization-gradient ferroelectric oxide films with colossal photovoltaic current," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Qiwu Shi & Eric Parsonnet & Xiaoxing Cheng & Natalya Fedorova & Ren-Ci Peng & Abel Fernandez & Alexander Qualls & Xiaoxi Huang & Xue Chang & Hongrui Zhang & David Pesquera & Sujit Das & Dmitri Nikonov, 2022. "The role of lattice dynamics in ferroelectric switching," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Leixin Miao & Kishwar-E Hasin & Parivash Moradifar & Debangshu Mukherjee & Ke Wang & Sang-Wook Cheong & Elizabeth A. Nowadnick & Nasim Alem, 2022. "Double-Bilayer polar nanoregions and Mn antisites in (Ca, Sr)3Mn2O7," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Mengjiao Han & Cong Wang & Kangdi Niu & Qishuo Yang & Chuanshou Wang & Xi Zhang & Junfeng Dai & Yujia Wang & Xiuliang Ma & Junling Wang & Lixing Kang & Wei Ji & Junhao Lin, 2022. "Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Kiumars Aryana & John A. Tomko & Ran Gao & Eric R. Hoglund & Takanori Mimura & Sara Makarem & Alejandro Salanova & Md Shafkat Bin Hoque & Thomas W. Pfeifer & David H. Olson & Jeffrey L. Braun & Joyeet, 2022. "Observation of solid-state bidirectional thermal conductivity switching in antiferroelectric lead zirconate (PbZrO3)," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38007-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.