IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v565y2019i7740d10.1038_s41586-018-0855-y.html
   My bibliography  Save this article

Spatially resolved steady-state negative capacitance

Author

Listed:
  • Ajay K. Yadav

    (University of California)

  • Kayla X. Nguyen

    (Cornell University)

  • Zijian Hong

    (Pennsylvania State University)

  • Pablo García-Fernández

    (Universidad de Cantabria, Cantabria Campus Internacional)

  • Pablo Aguado-Puente

    (Queen’s University Belfast)

  • Christopher T. Nelson

    (Lawrence Berkeley Laboratory
    University of California)

  • Sujit Das

    (University of California)

  • Bhagwati Prasad

    (University of California)

  • Daewoong Kwon

    (University of California)

  • Suraj Cheema

    (University of California)

  • Asif I. Khan

    (University of California
    Georgia Institute of Technology)

  • Chenming Hu

    (University of California)

  • Jorge Íñiguez

    (Luxembourg Institute of Science and Technology)

  • Javier Junquera

    (Universidad de Cantabria, Cantabria Campus Internacional)

  • Long-Qing Chen

    (Pennsylvania State University)

  • David A. Muller

    (Cornell University
    Cornell University)

  • Ramamoorthy Ramesh

    (University of California)

  • Sayeef Salahuddin

    (University of California)

Abstract

Negative capacitance is a newly discovered state of ferroelectric materials that holds promise for electronics applications by exploiting a region of thermodynamic space that is normally not accessible1–14. Although existing reports of negative capacitance substantiate the importance of this phenomenon, they have focused on its macroscale manifestation. These manifestations demonstrate possible uses of steady-state negative capacitance—for example, enhancing the capacitance of a ferroelectric–dielectric heterostructure4,7,14 or improving the subthreshold swing of a transistor8–12. Yet they constitute only indirect measurements of the local state of negative capacitance in which the ferroelectric resides. Spatial mapping of this phenomenon would help its understanding at a microscopic scale and also help to achieve optimal design of devices with potential technological applications. Here we demonstrate a direct measurement of steady-state negative capacitance in a ferroelectric–dielectric heterostructure. We use electron microscopy complemented by phase-field and first-principles-based (second-principles) simulations in SrTiO3/PbTiO3 superlattices to directly determine, with atomic resolution, the local regions in the ferroelectric material where a state of negative capacitance is stabilized. Simultaneous vector mapping of atomic displacements (related to a complex pattern in the polarization field), in conjunction with reconstruction of the local electric field, identify the negative capacitance regions as those with higher energy density and larger polarizability: the domain walls where the polarization is suppressed.

Suggested Citation

  • Ajay K. Yadav & Kayla X. Nguyen & Zijian Hong & Pablo García-Fernández & Pablo Aguado-Puente & Christopher T. Nelson & Sujit Das & Bhagwati Prasad & Daewoong Kwon & Suraj Cheema & Asif I. Khan & Chenm, 2019. "Spatially resolved steady-state negative capacitance," Nature, Nature, vol. 565(7740), pages 468-471, January.
  • Handle: RePEc:nat:nature:v:565:y:2019:i:7740:d:10.1038_s41586-018-0855-y
    DOI: 10.1038/s41586-018-0855-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0855-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0855-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Lin & Zijun Zhang & Zhenbang Dai & Mengjiao Wu & Shi Liu & Jialu Chen & Chenqiang Hua & Yunhao Lu & Fei Zhang & Hongbo Lou & Hongliang Dong & Qiaoshi Zeng & Jing Ma & Xiaodong Pi & Dikui Zhou & Y, 2023. "Solution epitaxy of polarization-gradient ferroelectric oxide films with colossal photovoltaic current," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Michael Hoffmann & Zheng Wang & Nujhat Tasneem & Ahmad Zubair & Prasanna Venkatesan Ravindran & Mengkun Tian & Anthony Arthur Gaskell & Dina Triyoso & Steven Consiglio & Kandabara Tapily & Robert Clar, 2022. "Antiferroelectric negative capacitance from a structural phase transition in zirconia," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Sandhya Susarla & Pablo García-Fernández & Colin Ophus & Sujit Das & Pablo Aguado-Puente & Margaret McCarter & Peter Ercius & Lane W. Martin & Ramamoorthy Ramesh & Javier Junquera, 2021. "Atomic scale crystal field mapping of polar vortices in oxide superlattices," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Yu-Jia Wang & Yan-Peng Feng & Yun-Long Tang & Yin-Lian Zhu & Yi Cao & Min-Jie Zou & Wan-Rong Geng & Xiu-Liang Ma, 2024. "Polar Bloch points in strained ferroelectric films," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Mingqiang Li & Tiannan Yang & Pan Chen & Yongjun Wang & Ruixue Zhu & Xiaomei Li & Ruochen Shi & Heng-Jui Liu & Yen-Lin Huang & Xiumei Ma & Jingmin Zhang & Xuedong Bai & Long-Qing Chen & Ying-Hao Chu &, 2022. "Electric-field control of the nucleation and motion of isolated three-fold polar vertices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Kook Tae Kim & Margaret R. McCarter & Vladimir A. Stoica & Sujit Das & Christoph Klewe & Elizabeth P. Donoway & David M. Burn & Padraic Shafer & Fanny Rodolakis & Mauro A. P. Gonçalves & Fernando Góme, 2022. "Chiral structures of electric polarization vectors quantified by X-ray resonant scattering," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Mengfan Guo & Erxiang Xu & Houbing Huang & Changqing Guo & Hetian Chen & Shulin Chen & Shan He & Le Zhou & Jing Ma & Zhonghui Shen & Ben Xu & Di Yi & Peng Gao & Ce-Wen Nan & Neil. D. Mathur & Yang She, 2024. "Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:565:y:2019:i:7740:d:10.1038_s41586-018-0855-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.