IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28325-5.html
   My bibliography  Save this article

Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes

Author

Listed:
  • Shaofeng Li

    (SLAC National Accelerator Laboratory
    Dalian University of Technology)

  • Guannan Qian

    (SLAC National Accelerator Laboratory
    Shanghai Jiao Tong University)

  • Xiaomei He

    (Purdue University)

  • Xiaojing Huang

    (Brookhaven National Laboratory)

  • Sang-Jun Lee

    (SLAC National Accelerator Laboratory)

  • Zhisen Jiang

    (SLAC National Accelerator Laboratory)

  • Yang Yang

    (Brookhaven National Laboratory)

  • Wei-Na Wang

    (Shanghai Jiao Tong University)

  • Dechao Meng

    (Shanghai Jiao Tong University)

  • Chang Yu

    (Dalian University of Technology)

  • Jun-Sik Lee

    (SLAC National Accelerator Laboratory)

  • Yong S. Chu

    (Brookhaven National Laboratory)

  • Zi-Feng Ma

    (Shanghai Jiao Tong University)

  • Piero Pianetta

    (SLAC National Accelerator Laboratory)

  • Jieshan Qiu

    (Dalian University of Technology)

  • Linsen Li

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University Sichuan Research Institute)

  • Kejie Zhao

    (Purdue University)

  • Yijin Liu

    (SLAC National Accelerator Laboratory)

Abstract

Single-crystalline nickel-rich cathodes are a rising candidate with great potential for high-energy lithium-ion batteries due to their superior structural and chemical robustness in comparison with polycrystalline counterparts. Within the single-crystalline cathode materials, the lattice strain and defects have significant impacts on the intercalation chemistry and, therefore, play a key role in determining the macroscopic electrochemical performance. Guided by our predictive theoretical model, we have systematically evaluated the effectiveness of regaining lost capacity by modulating the lattice deformation via an energy-efficient thermal treatment at different chemical states. We demonstrate that the lattice structure recoverability is highly dependent on both the cathode composition and the state of charge, providing clues to relieving the fatigued cathode crystal for sustainable lithium-ion batteries.

Suggested Citation

  • Shaofeng Li & Guannan Qian & Xiaomei He & Xiaojing Huang & Sang-Jun Lee & Zhisen Jiang & Yang Yang & Wei-Na Wang & Dechao Meng & Chang Yu & Jun-Sik Lee & Yong S. Chu & Zi-Feng Ma & Piero Pianetta & Ji, 2022. "Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28325-5
    DOI: 10.1038/s41467-022-28325-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28325-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28325-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pengfei Yan & Jianming Zheng & Tianwu Chen & Langli Luo & Yuyuan Jiang & Kuan Wang & Manling Sui & Ji-Guang Zhang & Sulin Zhang & Chongmin Wang, 2018. "Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. A. Singer & M. Zhang & S. Hy & D. Cela & C. Fang & T. A. Wynn & B. Qiu & Y. Xia & Z. Liu & A. Ulvestad & N. Hua & J. Wingert & H. Liu & M. Sprung & A. V. Zozulya & E. Maxey & R. Harder & Y. S. Meng & , 2018. "Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging," Nature Energy, Nature, vol. 3(8), pages 641-647, August.
    3. Wangda Li & Evan M. Erickson & Arumugam Manthiram, 2020. "High-nickel layered oxide cathodes for lithium-based automotive batteries," Nature Energy, Nature, vol. 5(1), pages 26-34, January.
    4. Shaofeng Li & Zhisen Jiang & Jiaxiu Han & Zhengrui Xu & Chenxu Wang & Hai Huang & Chang Yu & Sang-Jun Lee & Piero Pianetta & Hendrik Ohldag & Jieshan Qiu & Jun-Sik Lee & Feng Lin & Kejie Zhao & Yijin , 2020. "Mutual modulation between surface chemistry and bulk microstructure within secondary particles of nickel-rich layered oxides," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isaac Martens & Nikita Vostrov & Marta Mirolo & Steven J. Leake & Edoardo Zatterin & Xiaobo Zhu & Lianzhou Wang & Jakub Drnec & Marie-Ingrid Richard & Tobias U. Schulli, 2023. "Defects and nanostrain gradients control phase transition mechanisms in single crystal high-voltage lithium spinel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Ho-Young Jang & Donggun Eum & Jiung Cho & Jun Lim & Yeji Lee & Jun-Hyuk Song & Hyeokjun Park & Byunghoon Kim & Do-Hoon Kim & Sung-Pyo Cho & Sugeun Jo & Jae Hoon Heo & Sunyoung Lee & Jongwoo Lim & Kisu, 2024. "Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyao Gao & Chenglong Zhao & Kai Zhou & Junru Wu & Yao Tian & Xianming Deng & Lihan Zhang & Kui Lin & Feiyu Kang & Lele Peng & Marnix Wagemaker & Baohua Li, 2024. "Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Zhongsheng Dai & Zhujie Li & Renjie Chen & Feng Wu & Li Li, 2023. "Defective oxygen inert phase stabilized high-voltage nickel-rich cathode for high-energy lithium-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Zhichen Xue & Nikhil Sharma & Feixiang Wu & Piero Pianetta & Feng Lin & Luxi Li & Kejie Zhao & Yijin Liu, 2023. "Asynchronous domain dynamics and equilibration in layered oxide battery cathode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Held, Marcel & Tuchschmid, Martin & Zennegg, Markus & Figi, Renato & Schreiner, Claudia & Mellert, Lars Derek & Welte, Urs & Kompatscher, Michael & Hermann, Michael & Nachef, Léa, 2022. "Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Han Yang & Shiyu Lin & Alex Cheng & Fangbo He & Zhoulu Wang & Yutong Wu & Yi Zhang & Xiang Liu, 2023. "Recent Advances in Ball-Milling-Based Silicon Anodes for Lithium-Ion Batteries," Energies, MDPI, vol. 16(7), pages 1-21, March.
    7. Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Pranjal Barman & Lachit Dutta & Brian Azzopardi, 2023. "Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art," Energies, MDPI, vol. 16(8), pages 1-23, April.
    9. Jung-Hui Kim & Ju-Myung Kim & Seok-Kyu Cho & Nag-Young Kim & Sang-Young Lee, 2022. "Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Hailong Wang & Xin Geng & Linyu Hu & Jun Wang & Yunkai Xu & Yudong Zhu & Zhimeng Liu & Jun Lu & Yuanjing Lin & Xin He, 2024. "Efficient direct repairing of lithium- and manganese-rich cathodes by concentrated solar radiation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Yu, Hanqing & Zhang, Lisheng & Wang, Wentao & Li, Shen & Chen, Siyan & Yang, Shichun & Li, Junfu & Liu, Xinhua, 2023. "State of charge estimation method by using a simplified electrochemical model in deep learning framework for lithium-ion batteries," Energy, Elsevier, vol. 278(C).
    12. Lu, Jiajia & Zhang, Yanqiong & Huang, Weiwei & Omran, Mamdouh & Zhang, Fan & Gao, Lei & Chen, Guo, 2023. "Reductive roasting of cathode powder of spent ternary lithium-ion battery by pyrolysis of invasive plant Crofton weed," Renewable Energy, Elsevier, vol. 206(C), pages 86-96.
    13. Tang, Chen & Sprecher, Benjamin & Tukker, Arnold & Mogollón, José M., 2021. "The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040," Resources Policy, Elsevier, vol. 74(C).
    14. Hanwen An & Menglu Li & Qingsong Liu & Yajie Song & Jiaxuan Liu & Zhihang Yu & Xingjiang Liu & Biao Deng & Jiajun Wang, 2024. "Strong Lewis-acid coordinated PEO electrolyte achieves 4.8 V-class all-solid-state batteries over 580 Wh kg−1," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Gogwon Choe & Hyungsub Kim & Jaesub Kwon & Woochul Jung & Kyu-Young Park & Yong-Tae Kim, 2024. "Re-evaluation of battery-grade lithium purity toward sustainable batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Danfeng Zhang & Ming Liu & Jiabin Ma & Ke Yang & Zhen Chen & Kaikai Li & Chen Zhang & Yinping Wei & Min Zhou & Peng Wang & Yuanbiao He & Wei Lv & Quan-Hong Yang & Feiyu Kang & Yan-Bing He, 2022. "Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Peng Li & Nicholas W. Phillips & Steven Leake & Marc Allain & Felix Hofmann & Virginie Chamard, 2021. "Revealing nano-scale lattice distortions in implanted material with 3D Bragg ptychography," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    18. Yi Pei & Qing Chen & Meiyu Wang & Pengjun Zhang & Qingyong Ren & Jingkai Qin & Penghao Xiao & Li Song & Yu Chen & Wen Yin & Xin Tong & Liang Zhen & Peng Wang & Cheng-Yan Xu, 2022. "A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Isaac Martens & Nikita Vostrov & Marta Mirolo & Steven J. Leake & Edoardo Zatterin & Xiaobo Zhu & Lianzhou Wang & Jakub Drnec & Marie-Ingrid Richard & Tobias U. Schulli, 2023. "Defects and nanostrain gradients control phase transition mechanisms in single crystal high-voltage lithium spinel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Muhammad Mominur Rahman & Sha Tan & Yang Yang & Hui Zhong & Sanjit Ghose & Iradwikanari Waluyo & Adrian Hunt & Lu Ma & Xiao-Qing Yang & Enyuan Hu, 2023. "An inorganic-rich but LiF-free interphase for fast charging and long cycle life lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28325-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.