IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45754-6.html
   My bibliography  Save this article

Efficient direct repairing of lithium- and manganese-rich cathodes by concentrated solar radiation

Author

Listed:
  • Hailong Wang

    (Sichuan University
    Southern University of Science and Technology)

  • Xin Geng

    (Sichuan University)

  • Linyu Hu

    (Southern University of Science and Technology)

  • Jun Wang

    (Southern University of Science and Technology)

  • Yunkai Xu

    (Zhejiang University)

  • Yudong Zhu

    (Southern University of Science and Technology)

  • Zhimeng Liu

    (Sichuan University)

  • Jun Lu

    (Zhejiang University)

  • Yuanjing Lin

    (Southern University of Science and Technology)

  • Xin He

    (Sichuan University
    Sichuan University
    Civil Aviation Flight University of China)

Abstract

Lithium- and manganese-rich layered oxide cathode materials have attracted extensive interest because of their high energy density. However, the rapid capacity fading and serve voltage decay over cycling make the waste management and recycling of key components indispensable. Herein, we report a facile concentrated solar radiation strategy for the direct recycling of Lithium- and manganese-rich cathodes, which enables the recovery of capacity and effectively improves its electrochemical stability. The phase change from layered to spinel on the particle surface and metastable state structure of cycled material provides the precondition for photocatalytic reaction and thermal reconstruction during concentrated solar radiation processing. The inducement of partial inverse spinel phase is identified after concentrated solar radiation treatment, which strongly enhances the redox activity of transition metal cations and oxygen anion, and reversibility of lattice structure. This study sheds new light on the reparation of spent cathode materials and designing high-performance compositions to mitigate structural degradation.

Suggested Citation

  • Hailong Wang & Xin Geng & Linyu Hu & Jun Wang & Yunkai Xu & Yudong Zhu & Zhimeng Liu & Jun Lu & Yuanjing Lin & Xin He, 2024. "Efficient direct repairing of lithium- and manganese-rich cathodes by concentrated solar radiation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45754-6
    DOI: 10.1038/s41467-024-45754-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45754-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45754-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Singer & M. Zhang & S. Hy & D. Cela & C. Fang & T. A. Wynn & B. Qiu & Y. Xia & Z. Liu & A. Ulvestad & N. Hua & J. Wingert & H. Liu & M. Sprung & A. V. Zozulya & E. Maxey & R. Harder & Y. S. Meng & , 2018. "Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging," Nature Energy, Nature, vol. 3(8), pages 641-647, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Shaofeng Li & Guannan Qian & Xiaomei He & Xiaojing Huang & Sang-Jun Lee & Zhisen Jiang & Yang Yang & Wei-Na Wang & Dechao Meng & Chang Yu & Jun-Sik Lee & Yong S. Chu & Zi-Feng Ma & Piero Pianetta & Ji, 2022. "Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Peng Li & Nicholas W. Phillips & Steven Leake & Marc Allain & Felix Hofmann & Virginie Chamard, 2021. "Revealing nano-scale lattice distortions in implanted material with 3D Bragg ptychography," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Isaac Martens & Nikita Vostrov & Marta Mirolo & Steven J. Leake & Edoardo Zatterin & Xiaobo Zhu & Lianzhou Wang & Jakub Drnec & Marie-Ingrid Richard & Tobias U. Schulli, 2023. "Defects and nanostrain gradients control phase transition mechanisms in single crystal high-voltage lithium spinel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Ho-Young Jang & Donggun Eum & Jiung Cho & Jun Lim & Yeji Lee & Jun-Hyuk Song & Hyeokjun Park & Byunghoon Kim & Do-Hoon Kim & Sung-Pyo Cho & Sugeun Jo & Jae Hoon Heo & Sunyoung Lee & Jongwoo Lim & Kisu, 2024. "Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Ashraf Abdel-Ghany & Ahmed M. Hashem & Alain Mauger & Christian M. Julien, 2020. "Lithium-Rich Cobalt-Free Manganese-Based Layered Cathode Materials for Li-Ion Batteries: Suppressing the Voltage Fading," Energies, MDPI, vol. 13(13), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45754-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.