IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55010-6.html
   My bibliography  Save this article

Operando real-space imaging of a structural phase transformation in the high-voltage electrode LixNi0.5Mn1.5O4

Author

Listed:
  • Yifei Sun

    (Cornell University)

  • Sunny Hy

    (University of California San Diego)

  • Nelson Hua

    (University of California San Diego
    Paul Scherrer Institute)

  • James Wingert

    (University of California San Diego)

  • Ross Harder

    (Argonne National Laboratory)

  • Ying Shirley Meng

    (University of California San Diego
    University of Chicago)

  • Oleg Shpyrko

    (University of California San Diego)

  • Andrej Singer

    (Cornell University)

Abstract

Discontinuous solid-solid phase transformations play a pivotal role in determining the properties of rechargeable battery electrodes. By leveraging operando Bragg Coherent Diffractive Imaging (BCDI), we investigate the discontinuous phase transformation in LixNi0.5Mn1.5O4 within an operational Li metal coin cell. Throughout Li-intercalation, we directly observe the nucleation and growth of the Li-rich phase within the initially charged Li-poor phase in a 500 nm particle. Supported by the microelasticity model, the operando imaging unveils an evolution from a curved coherent to a planar semi-coherent interface driven by dislocation dynamics. Our data indicates negligible kinetic limitations from interface propagation impacting the transformation kinetics, even at a discharge rate of C/2 (80 mA/g). This study highlights BCDI’s capability to decode complex operando diffraction data, offering exciting opportunities to study nanoscale phase transformations with various stimuli.

Suggested Citation

  • Yifei Sun & Sunny Hy & Nelson Hua & James Wingert & Ross Harder & Ying Shirley Meng & Oleg Shpyrko & Andrej Singer, 2024. "Operando real-space imaging of a structural phase transformation in the high-voltage electrode LixNi0.5Mn1.5O4," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55010-6
    DOI: 10.1038/s41467-024-55010-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55010-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55010-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Saravanan Kuppan & Yahong Xu & Yijin Liu & Guoying Chen, 2017. "Phase transformation mechanism in lithium manganese nickel oxide revealed by single-crystal hard X-ray microscopy," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    2. A. Singer & M. Zhang & S. Hy & D. Cela & C. Fang & T. A. Wynn & B. Qiu & Y. Xia & Z. Liu & A. Ulvestad & N. Hua & J. Wingert & H. Liu & M. Sprung & A. V. Zozulya & E. Maxey & R. Harder & Y. S. Meng & , 2018. "Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging," Nature Energy, Nature, vol. 3(8), pages 641-647, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isaac Martens & Nikita Vostrov & Marta Mirolo & Steven J. Leake & Edoardo Zatterin & Xiaobo Zhu & Lianzhou Wang & Jakub Drnec & Marie-Ingrid Richard & Tobias U. Schulli, 2023. "Defects and nanostrain gradients control phase transition mechanisms in single crystal high-voltage lithium spinel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Hailong Wang & Xin Geng & Linyu Hu & Jun Wang & Yunkai Xu & Yudong Zhu & Zhimeng Liu & Jun Lu & Yuanjing Lin & Xin He, 2024. "Efficient direct repairing of lithium- and manganese-rich cathodes by concentrated solar radiation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Shaofeng Li & Guannan Qian & Xiaomei He & Xiaojing Huang & Sang-Jun Lee & Zhisen Jiang & Yang Yang & Wei-Na Wang & Dechao Meng & Chang Yu & Jun-Sik Lee & Yong S. Chu & Zi-Feng Ma & Piero Pianetta & Ji, 2022. "Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Peng Li & Nicholas W. Phillips & Steven Leake & Marc Allain & Felix Hofmann & Virginie Chamard, 2021. "Revealing nano-scale lattice distortions in implanted material with 3D Bragg ptychography," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Ho-Young Jang & Donggun Eum & Jiung Cho & Jun Lim & Yeji Lee & Jun-Hyuk Song & Hyeokjun Park & Byunghoon Kim & Do-Hoon Kim & Sung-Pyo Cho & Sugeun Jo & Jae Hoon Heo & Sunyoung Lee & Jongwoo Lim & Kisu, 2024. "Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Tonghuan Yang & Kun Zhang & Yuxuan Zuo & Jin Song & Yali Yang & Chuan Gao & Tao Chen & Hangchao Wang & Wukun Xiao & Zewen Jiang & Dingguo Xia, 2024. "Ultrahigh-nickel layered cathode with cycling stability for sustainable lithium-ion batteries," Nature Sustainability, Nature, vol. 7(9), pages 1204-1214, September.
    9. Ashraf Abdel-Ghany & Ahmed M. Hashem & Alain Mauger & Christian M. Julien, 2020. "Lithium-Rich Cobalt-Free Manganese-Based Layered Cathode Materials for Li-Ion Batteries: Suppressing the Voltage Fading," Energies, MDPI, vol. 13(13), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55010-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.