IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27503-1.html
   My bibliography  Save this article

Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface

Author

Listed:
  • Jianqiang Zhang

    (City University of Hong Kong)

  • Xuejiao Wang

    (City University of Hong Kong)

  • Zhaoyue Wang

    (City University of Hong Kong)

  • Shangfa Pan

    (Chinese Academy of Sciences)

  • Bo Yi

    (City University of Hong Kong)

  • Liqing Ai

    (City University of Hong Kong)

  • Jun Gao

    (Chinese Academy of Sciences)

  • Frieder Mugele

    (University of Twente)

  • Xi Yao

    (City University of Hong Kong
    City University of Hong Kong)

Abstract

Flexible actuation of droplets is crucial for biomedical and industrial applications. Hence, various approaches using optical, electrical, and magnetic forces have been exploited to actuate droplets. For broad applicability, an ideal approach should be programmable and be able to actuate droplets of arbitrary size and composition. Here we present an “additive-free” magnetic actuation method to programmably manipulate droplets of water, organic, and biological fluids of arbitrary composition, as well as solid samples, on a ferrofluid-infused porous surface. We specifically exploit the spontaneously formed ferrofluid wetting ridges to actuate droplets using spatially varying magnetic fields. We demonstrate programmed processing and analysis of biological samples in individual drops as well as the collective actuation of large ensembles of micrometer-sized droplets. Such model respiratory droplets can be accumulated for improved quantitative and sensitive bioanalysis - an otherwise prohibitively difficult task that may be useful in tracking coronavirus.

Suggested Citation

  • Jianqiang Zhang & Xuejiao Wang & Zhaoyue Wang & Shangfa Pan & Bo Yi & Liqing Ai & Jun Gao & Frieder Mugele & Xi Yao, 2021. "Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27503-1
    DOI: 10.1038/s41467-021-27503-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27503-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27503-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peyman Irajizad & Munib Hasnain & Nazanin Farokhnia & Seyed Mohammad Sajadi & Hadi Ghasemi, 2016. "Magnetic slippery extreme icephobic surfaces," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
    2. Gibum Kwon & Divya Panchanathan & Seyed Reza Mahmoudi & Mohammed A. Gondal & Gareth H. McKinley & Kripa K. Varanasi, 2017. "Visible light guided manipulation of liquid wettability on photoresponsive surfaces," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    3. Tak-Sing Wong & Sung Hoon Kang & Sindy K. Y. Tang & Elizabeth J. Smythe & Benjamin D. Hatton & Alison Grinthal & Joanna Aizenberg, 2011. "Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity," Nature, Nature, vol. 477(7365), pages 443-447, September.
    4. Giorgio Bonmassar & Seung Woo Lee & Daniel K. Freeman & Miloslav Polasek & Shelley I. Fried & John T. Gale, 2012. "Microscopic magnetic stimulation of neural tissue," Nature Communications, Nature, vol. 3(1), pages 1-10, January.
    5. S. Karpitschka & S. Das & M. van Gorcum & H. Perrin & B. Andreotti & J. H. Snoeijer, 2015. "Droplets move over viscoelastic substrates by surfing a ridge," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haobo Xu & Yimin Zhou & Dan Daniel & Joshua Herzog & Xiaoguang Wang & Volker Sick & Solomon Adera, 2023. "Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Shaojun Jiang & Bo Li & Jun Zhao & Dong Wu & Yiyuan Zhang & Zhipeng Zhao & Yiyuan Zhang & Hao Yu & Kexiang Shao & Cong Zhang & Rui Li & Chao Chen & Zuojun Shen & Jie Hu & Bin Dong & Ling Zhu & Jiawen , 2023. "Magnetic Janus origami robot for cross-scale droplet omni-manipulation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Agustin D. Pizarro & Claudio L. A. Berli & Galo J. A. A. Soler-Illia & Martín G. Bellino, 2022. "Droplets in underlying chemical communication recreate cell interaction behaviors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Liqun & Zhang, Zichen & Gao, Linyue & Liu, Yang & Hu, Hui, 2020. "An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 162(C), pages 2344-2360.
    2. Zhang, P. & Lv, F.Y., 2015. "A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications," Energy, Elsevier, vol. 82(C), pages 1068-1087.
    3. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Lizhong Wang & Ze Tian & Guochen Jiang & Xiao Luo & Changhao Chen & Xinyu Hu & Hongjun Zhang & Minlin Zhong, 2022. "Spontaneous dewetting transitions of droplets during icing & melting cycle," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Kuanfu Chen & Yujie Tao & Weiwei Shi, 2022. "Recent Advances in Water Harvesting: A Review of Materials, Devices and Applications," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    6. John P. Ulhøi, 2021. "From innovation-as-usual towards unusual innovation: using nature as an inspiration," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-21, December.
    7. Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Abdel Hakim Abou Yassine & Ehsan Khoshbakhtnejad & Hossein Sojoudi, 2024. "Economics of Snow Accumulation on Photovoltaic Modules," Energies, MDPI, vol. 17(12), pages 1-18, June.
    9. Haobo Xu & Yimin Zhou & Dan Daniel & Joshua Herzog & Xiaoguang Wang & Volker Sick & Solomon Adera, 2023. "Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Alireza Hakimian & Mohammadjavad Mohebinia & Masoumeh Nazari & Ali Davoodabadi & Sina Nazifi & Zixu Huang & Jiming Bao & Hadi Ghasemi, 2021. "Freezing of few nanometers water droplets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    11. Al-Obaidi, Karam M. & Azzam Ismail, Muhammad & Hussein, Hazreena & Abdul Rahman, Abdul Malik, 2017. "Biomimetic building skins: An adaptive approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1472-1491.
    12. Ruqaya Khammas & Heli Koivuluoto, 2022. "Durable Icephobic Slippery Liquid-Infused Porous Surfaces (SLIPS) Using Flame- and Cold-Spraying," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    13. Hamza K. Khattak & Stefan Karpitschka & Jacco H. Snoeijer & Kari Dalnoki-Veress, 2022. "Direct force measurement of microscopic droplets pulled along soft surfaces," Nature Communications, Nature, vol. 13(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27503-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.