IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26999-x.html
   My bibliography  Save this article

The autophagy protein ATG9A enables lipid mobilization from lipid droplets

Author

Listed:
  • Elodie Mailler

    (Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health)

  • Carlos M. Guardia

    (Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health)

  • Xiaofei Bai

    (Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health)

  • Michal Jarnik

    (Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health)

  • Chad D. Williamson

    (Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health)

  • Yan Li

    (Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health)

  • Nunziata Maio

    (Metals Biology and Molecular Medicine Group, Eunice Kennedy Shriver National Institute of Child Health and Human Development)

  • Andy Golden

    (Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health)

  • Juan S. Bonifacino

    (Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health)

Abstract

The multispanning membrane protein ATG9A is a scramblase that flips phospholipids between the two membrane leaflets, thus contributing to the expansion of the phagophore membrane in the early stages of autophagy. Herein, we show that depletion of ATG9A does not only inhibit autophagy but also increases the size and/or number of lipid droplets in human cell lines and C. elegans. Moreover, ATG9A depletion blocks transfer of fatty acids from lipid droplets to mitochondria and, consequently, utilization of fatty acids in mitochondrial respiration. ATG9A localizes to vesicular-tubular clusters (VTCs) that are tightly associated with an ER subdomain enriched in another multispanning membrane scramblase, TMEM41B, and also in close proximity to phagophores, lipid droplets and mitochondria. These findings indicate that ATG9A plays a critical role in lipid mobilization from lipid droplets to autophagosomes and mitochondria, highlighting the importance of ATG9A in both autophagic and non-autophagic processes.

Suggested Citation

  • Elodie Mailler & Carlos M. Guardia & Xiaofei Bai & Michal Jarnik & Chad D. Williamson & Yan Li & Nunziata Maio & Andy Golden & Juan S. Bonifacino, 2021. "The autophagy protein ATG9A enables lipid mobilization from lipid droplets," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26999-x
    DOI: 10.1038/s41467-021-26999-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26999-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26999-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandra K. Davies & Daniel N. Itzhak & James R. Edgar & Tara L. Archuleta & Jennifer Hirst & Lauren P. Jackson & Margaret S. Robinson & Georg H. H. Borner, 2018. "AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A," Nature Communications, Nature, vol. 9(1), pages 1-21, December.
    2. Rajat Singh & Susmita Kaushik & Yongjun Wang & Youqing Xiang & Inna Novak & Masaaki Komatsu & Keiji Tanaka & Ana Maria Cuervo & Mark J. Czaja, 2009. "Autophagy regulates lipid metabolism," Nature, Nature, vol. 458(7242), pages 1131-1135, April.
    3. Noboru Mizushima & Takeshi Noda & Tamotsu Yoshimori & Yae Tanaka & Tomoko Ishii & Michael D. George & Daniel J. Klionsky & Mariko Ohsumi & Yoshinori Ohsumi, 1998. "A protein conjugation system essential for autophagy," Nature, Nature, vol. 395(6700), pages 395-398, September.
    4. Maho Hamasaki & Nobumichi Furuta & Atsushi Matsuda & Akiko Nezu & Akitsugu Yamamoto & Naonobu Fujita & Hiroko Oomori & Takeshi Noda & Tokuko Haraguchi & Yasushi Hiraoka & Atsuo Amano & Tamotsu Yoshimo, 2013. "Autophagosomes form at ER–mitochondria contact sites," Nature, Nature, vol. 495(7441), pages 389-393, March.
    5. Yusuke Imagawa & Tatsuya Saitoh & Yoshihide Tsujimoto, 2016. "Vital staining for cell death identifies Atg9a-dependent necrosis in developmental bone formation in mouse," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    6. Yoshinori Takahashi & Haiyan He & Zhenyuan Tang & Tatsuya Hattori & Ying Liu & Megan M. Young & Jacob M. Serfass & Longgui Chen & Melat Gebru & Chong Chen & Carson A. Wills & Jennifer M. Atkinson & Ha, 2018. "An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    7. Zhe Cao & Yan Hao & Chun Wing Fung & Yiu Yiu Lee & Pengfei Wang & Xuesong Li & Kang Xie & Wen Jiun Lam & Yifei Qiu & Ben Zhong Tang & Guanghou Shui & Pingsheng Liu & Jianan Qu & Byung-Ho Kang & Ho Yi , 2019. "Dietary fatty acids promote lipid droplet diversity through seipin enrichment in an ER subdomain," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Yuan & Kun Cai & Jiajia Li & Ruifeng Chen & Fuhai Zhang & Xuan Tan & Yaming Jiu & Haishuang Chang & Bing Hu & Weiyi Zhang & Binbin Ding, 2024. "ATG14 targets lipid droplets and acts as an autophagic receptor for syntaxin18-regulated lipid droplet turnover," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia P. Schessner & Vincent Albrecht & Alexandra K. Davies & Pavel Sinitcyn & Georg H. H. Borner, 2023. "Deep and fast label-free Dynamic Organellar Mapping," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Lin-lin Zhao & Ru Chen & Ziyu Bai & Junyi Liu & Yuhao Zhang & Yicheng Zhong & Meng-xiang Sun & Peng Zhao, 2024. "Autophagy-mediated degradation of integumentary tapetum is critical for embryo pattern formation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Hong Huang & Qinqin Ouyang & Min Zhu & Haijia Yu & Kunrong Mei & Rong Liu, 2021. "mTOR-mediated phosphorylation of VAMP8 and SCFD1 regulates autophagosome maturation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Scotland E. Farley & Jennifer E. Kyle & Hans C. Leier & Lisa M. Bramer & Jules B. Weinstein & Timothy A. Bates & Joon-Yong Lee & Thomas O. Metz & Carsten Schultz & Fikadu G. Tafesse, 2022. "A global lipid map reveals host dependency factors conserved across SARS-CoV-2 variants," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Alexandra K. Davies & Julian E. Alecu & Marvin Ziegler & Catherine G. Vasilopoulou & Fabrizio Merciai & Hellen Jumo & Wardiya Afshar-Saber & Mustafa Sahin & Darius Ebrahimi-Fakhari & Georg H. H. Borne, 2022. "AP-4-mediated axonal transport controls endocannabinoid production in neurons," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Yoshito Minami & Atsushi Hoshino & Yusuke Higuchi & Masahide Hamaguchi & Yusaku Kaneko & Yuhei Kirita & Shunta Taminishi & Toshiyuki Nishiji & Akiyuki Taruno & Michiaki Fukui & Zoltan Arany & Satoaki , 2023. "Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Nina Frey & Luigi Tortola & David Egli & Sharan Janjuha & Tanja Rothgangl & Kim Fabiano Marquart & Franziska Ampenberger & Manfred Kopf & Gerald Schwank, 2022. "Loss of Rnf31 and Vps4b sensitizes pancreatic cancer to T cell-mediated killing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Takashi Nozawa & Hirotaka Toh & Junpei Iibushi & Kohei Kogai & Atsuko Minowa-Nozawa & Junko Satoh & Shinji Ito & Kazunori Murase & Ichiro Nakagawa, 2023. "Rab41-mediated ESCRT machinery repairs membrane rupture by a bacterial toxin in xenophagy," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Wenjun Wang & Junyang Tan & Xiaomin Liu & Wenqi Guo & Mengmeng Li & Xinjie Liu & Yanyan Liu & Wenyu Dai & Liubing Hu & Yimin Wang & Qiuxia Lu & Wen Xing Lee & Hong-Wen Tang & Qinghua Zhou, 2023. "Cytoplasmic Endonuclease G promotes nonalcoholic fatty liver disease via mTORC2-AKT-ACLY and endoplasmic reticulum stress," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Guanlan Hu & Catriona Ling & Lijun Chi & Mehakpreet K. Thind & Samuel Furse & Albert Koulman & Jonathan R. Swann & Dorothy Lee & Marjolein M. Calon & Celine Bourdon & Christian J. Versloot & Barbara M, 2022. "The role of the tryptophan-NAD + pathway in a mouse model of severe malnutrition induced liver dysfunction," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Donghai Cui & Zixiang Wang & Qianli Dang & Jing Wang & Junchao Qin & Jianping Song & Xiangyu Zhai & Yachao Zhou & Ling Zhao & Gang Lu & Hongbin Liu & Gang Liu & Runping Liu & Changshun Shao & Xiyu Zha, 2023. "Spliceosome component Usp39 contributes to hepatic lipid homeostasis through the regulation of autophagy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Afshin Saffari & Barbara Brechmann & Cedric Böger & Wardiya Afshar Saber & Hellen Jumo & Dosh Whye & Delaney Wood & Lara Wahlster & Julian E. Alecu & Marvin Ziegler & Marlene Scheffold & Kellen Winden, 2024. "High-content screening identifies a small molecule that restores AP-4-dependent protein trafficking in neuronal models of AP-4-associated hereditary spastic paraplegia," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    13. Agata N. Makar & Alina Boraman & Peter Mosen & Joanne E. Simpson & Jair Marques & Tim Michelberger & Stuart Aitken & Ann P. Wheeler & Dominic Winter & Alex Kriegsheim & Noor Gammoh, 2024. "The V-ATPase complex component RNAseK is required for lysosomal hydrolase delivery and autophagosome degradation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Lidia Wrobel & Sandra M. Hill & Alvin Djajadikerta & Marian Fernandez-Estevez & Cansu Karabiyik & Avraham Ashkenazi & Victoria J. Barratt & Eleanna Stamatakou & Anders Gunnarsson & Timothy Rasmusson &, 2022. "Compounds activating VCP D1 ATPase enhance both autophagic and proteasomal neurotoxic protein clearance," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Jialiu Zeng & Rebeca Acin-Perez & Essam A. Assali & Andrew Martin & Alexandra J. Brownstein & Anton Petcherski & Lucía Fernández-del-Rio & Ruiqing Xiao & Chih Hung Lo & Michaël Shum & Marc Liesa & Xue, 2023. "Restoration of lysosomal acidification rescues autophagy and metabolic dysfunction in non-alcoholic fatty liver disease," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Susanne G. Grein & Kyra A. Y. Defourny & Huib H. Rabouw & Soenita S. Goerdayal & Martijn J. C. Herwijnen & Richard W. Wubbolts & Maarten Altelaar & Frank J. M. Kuppeveld & Esther N. M. Nolte-‘t Hoen, 2022. "The encephalomyocarditis virus Leader promotes the release of virions inside extracellular vesicles via the induction of secretory autophagy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Ji-Man Park & Da-Hye Lee & Do-Hyung Kim, 2023. "Redefining the role of AMPK in autophagy and the energy stress response," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Yonglun Zeng & Baiying Li & Shuxian Huang & Hongbo Li & Wenhan Cao & Yixuan Chen & Guoyong Liu & Zhenping Li & Chao Yang & Lei Feng & Jiayang Gao & Sze Wan Lo & Jierui Zhao & Jinbo Shen & Yan Guo & Ca, 2023. "The plant unique ESCRT component FREE1 regulates autophagosome closure," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Youping Lin & Haixu Chen & Lei Wang & Jiaojiao Su & Junbo Li & Xin Huang, 2024. "Lipase activated endocytosis-like behavior of oil-in-water emulsion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Leslie A. Rowland & Adilson Guilherme & Felipe Henriques & Chloe DiMarzio & Sean Munroe & Nicole Wetoska & Mark Kelly & Keith Reddig & Gregory Hendricks & Meixia Pan & Xianlin Han & Olga R. Ilkayeva &, 2023. "De novo lipogenesis fuels adipocyte autophagosome and lysosome membrane dynamics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26999-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.