IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42039-2.html
   My bibliography  Save this article

Rab41-mediated ESCRT machinery repairs membrane rupture by a bacterial toxin in xenophagy

Author

Listed:
  • Takashi Nozawa

    (Kyoto University, Yoshida-Konoe-cho, Sakyo-ku)

  • Hirotaka Toh

    (Kyoto University, Yoshida-Konoe-cho, Sakyo-ku)

  • Junpei Iibushi

    (Kyoto University, Yoshida-Konoe-cho, Sakyo-ku)

  • Kohei Kogai

    (Kyoto University, Yoshida-Konoe-cho, Sakyo-ku)

  • Atsuko Minowa-Nozawa

    (Kyoto University, Yoshida-Konoe-cho, Sakyo-ku)

  • Junko Satoh

    (Kyoto University, Yoshida-Konoe-cho, Sakyo-ku)

  • Shinji Ito

    (Kyoto University, Yoshida-Konoe-cho, Sakyo-ku)

  • Kazunori Murase

    (Kyoto University, Yoshida-Konoe-cho, Sakyo-ku)

  • Ichiro Nakagawa

    (Kyoto University, Yoshida-Konoe-cho, Sakyo-ku)

Abstract

Xenophagy, a type of selective autophagy, is a bactericidal membrane trafficking that targets cytosolic bacterial pathogens, but the membrane homeostatic system to cope with bacterial infection in xenophagy is not known. Here, we show that the endosomal sorting complexes required for transport (ESCRT) machinery is needed to maintain homeostasis of xenophagolysosomes damaged by a bacterial toxin, which is regulated through the TOM1L2–Rab41 pathway that recruits AAA-ATPase VPS4. We screened Rab GTPases and identified Rab41 as critical for maintaining the acidification of xenophagolysosomes. Confocal microscopy revealed that ESCRT components were recruited to the entire xenophagolysosome, and this recruitment was inhibited by intrabody expression against bacterial cytolysin, indicating that ESCRT targets xenophagolysosomes in response to a bacterial toxin. Rab41 translocates to damaged autophagic membranes via adaptor protein TOM1L2 and recruits VPS4 to complete ESCRT-mediated membrane repair in a unique GTPase-independent manner. Finally, we demonstrate that the TOM1L2–Rab41 pathway-mediated ESCRT is critical for the efficient clearance of bacteria through xenophagy.

Suggested Citation

  • Takashi Nozawa & Hirotaka Toh & Junpei Iibushi & Kohei Kogai & Atsuko Minowa-Nozawa & Junko Satoh & Shinji Ito & Kazunori Murase & Ichiro Nakagawa, 2023. "Rab41-mediated ESCRT machinery repairs membrane rupture by a bacterial toxin in xenophagy," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42039-2
    DOI: 10.1038/s41467-023-42039-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42039-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42039-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroyuki Kabayama & Makoto Takeuchi & Naoko Tokushige & Shin-ichi Muramatsu & Miyuki Kabayama & Mitsunori Fukuda & Yoshiyuki Yamada & Katsuhiko Mikoshiba, 2020. "An ultra-stable cytoplasmic antibody engineered for in vivo applications," Nature Communications, Nature, vol. 11(1), pages 1-20, December.
    2. Yoshinori Takahashi & Haiyan He & Zhenyuan Tang & Tatsuya Hattori & Ying Liu & Megan M. Young & Jacob M. Serfass & Longgui Chen & Melat Gebru & Chong Chen & Carson A. Wills & Jennifer M. Atkinson & Ha, 2018. "An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nina Frey & Luigi Tortola & David Egli & Sharan Janjuha & Tanja Rothgangl & Kim Fabiano Marquart & Franziska Ampenberger & Manfred Kopf & Gerald Schwank, 2022. "Loss of Rnf31 and Vps4b sensitizes pancreatic cancer to T cell-mediated killing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Elodie Mailler & Carlos M. Guardia & Xiaofei Bai & Michal Jarnik & Chad D. Williamson & Yan Li & Nunziata Maio & Andy Golden & Juan S. Bonifacino, 2021. "The autophagy protein ATG9A enables lipid mobilization from lipid droplets," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    3. Susanne G. Grein & Kyra A. Y. Defourny & Huib H. Rabouw & Soenita S. Goerdayal & Martijn J. C. Herwijnen & Richard W. Wubbolts & Maarten Altelaar & Frank J. M. Kuppeveld & Esther N. M. Nolte-‘t Hoen, 2022. "The encephalomyocarditis virus Leader promotes the release of virions inside extracellular vesicles via the induction of secretory autophagy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Yonglun Zeng & Baiying Li & Shuxian Huang & Hongbo Li & Wenhan Cao & Yixuan Chen & Guoyong Liu & Zhenping Li & Chao Yang & Lei Feng & Jiayang Gao & Sze Wan Lo & Jierui Zhao & Jinbo Shen & Yan Guo & Ca, 2023. "The plant unique ESCRT component FREE1 regulates autophagosome closure," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Tomoyuki Hatano & Saravanan Palani & Dimitra Papatziamou & Ralf Salzer & Diorge P. Souza & Daniel Tamarit & Mehul Makwana & Antonia Potter & Alexandra Haig & Wenjue Xu & David Townsend & David Rochest, 2022. "Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42039-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.