IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56936-1.html
   My bibliography  Save this article

Melanocortin 3 receptor regulates hepatic autophagy and systemic adiposity

Author

Listed:
  • Tushar P. Patel

    (NIH)

  • Joo Yun Jun

    (NIH)

  • Arnold Y. Seo

    (Howard Hughes Medical Institute (HHMI))

  • Noah J. Levi

    (NIH)

  • Diana M. Elizondo

    (NIH)

  • Jocelyn Chen

    (NIH)

  • Adrian M. Wong

    (NIH)

  • Nicol Tugarinov

    (NIH)

  • Elizabeth K. Altman

    (NIH)

  • Daniel B. Gehle

    (NIH)

  • Sun Min Jung

    (NIH)

  • Pooja Patel

    (NIH)

  • Mark Ericson

    (University of Minnesota College of Pharmacy)

  • Carrie Haskell-Luevano

    (University of Minnesota College of Pharmacy)

  • Tamar C. Demby

    (NIH)

  • Antony Cougnoux

    (NIH)

  • Anna Wolska

    (NIH)

  • Jack A. Yanovski

    (NIH)

Abstract

Systemic lipid homeostasis requires hepatic autophagy, a major cellular program for intracellular fat recycling. Here, we find melanocortin 3 receptor (MC3R) regulates hepatic autophagy in addition to its previously established CNS role in systemic energy partitioning and puberty. Mice with Mc3r deficiency develop obesity with hepatic triglyceride accumulation and disrupted hepatocellular autophagosome turnover. Mice with partially inactive human MC3R due to obesogenic variants demonstrate similar hepatic autophagic dysfunction. In vitro and in vivo activation of hepatic MC3R upregulates autophagy through LC3II activation, TFEB cytoplasmic-to-nuclear translocation, and subsequent downstream gene activation. MC3R-deficient hepatocytes had blunted autophagosome-lysosome docking and lipid droplet clearance. Finally, the liver-specific rescue of Mc3r was sufficient to restore hepatocellular autophagy, improve hepatocyte mitochondrial function and systemic energy expenditures, reduce adipose tissue lipid accumulation, and partially restore body weight in both male and female mice. We thus report a role for MC3R in regulating hepatic autophagy and systemic adiposity.

Suggested Citation

  • Tushar P. Patel & Joo Yun Jun & Arnold Y. Seo & Noah J. Levi & Diana M. Elizondo & Jocelyn Chen & Adrian M. Wong & Nicol Tugarinov & Elizabeth K. Altman & Daniel B. Gehle & Sun Min Jung & Pooja Patel , 2025. "Melanocortin 3 receptor regulates hepatic autophagy and systemic adiposity," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56936-1
    DOI: 10.1038/s41467-025-56936-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56936-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56936-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rajat Singh & Susmita Kaushik & Yongjun Wang & Youqing Xiang & Inna Novak & Masaaki Komatsu & Keiji Tanaka & Ana Maria Cuervo & Mark J. Czaja, 2009. "Autophagy regulates lipid metabolism," Nature, Nature, vol. 458(7242), pages 1131-1135, April.
    2. Gennaro Napolitano & Alessandra Esposito & Heejun Choi & Maria Matarese & Valerio Benedetti & Chiara Di Malta & Jlenia Monfregola & Diego Luis Medina & Jennifer Lippincott-Schwartz & Andrea Ballabio, 2018. "mTOR-dependent phosphorylation controls TFEB nuclear export," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Bonggi Lee & Jashin Koo & Joo Yun Jun & Oksana Gavrilova & Yongjun Lee & Arnold Y. Seo & Dezmond C. Taylor-Douglas & Diane C. Adler-Wailes & Faye Chen & Ryan Gardner & Dimitri Koutzoumis & Roya Sheraf, 2016. "A mouse model for a partially inactive obesity-associated human MC3R variant," Nature Communications, Nature, vol. 7(1), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin-lin Zhao & Ru Chen & Ziyu Bai & Junyi Liu & Yuhao Zhang & Yicheng Zhong & Meng-xiang Sun & Peng Zhao, 2024. "Autophagy-mediated degradation of integumentary tapetum is critical for embryo pattern formation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Wang Peng & Shu Chen & Jingyu Ma & Wenjie Wei & Naixin Lin & Jinchao Xing & Wenjing Guo & Heying Li & Liang Zhang & Kuiming Chan & Andrew Yen & Guangyu Zhu & Jianbo Yue, 2025. "Endosomal trafficking participates in lipid droplet catabolism to maintain lipid homeostasis," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    3. Hong Huang & Qinqin Ouyang & Min Zhu & Haijia Yu & Kunrong Mei & Rong Liu, 2021. "mTOR-mediated phosphorylation of VAMP8 and SCFD1 regulates autophagosome maturation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Elodie Mailler & Carlos M. Guardia & Xiaofei Bai & Michal Jarnik & Chad D. Williamson & Yan Li & Nunziata Maio & Andy Golden & Juan S. Bonifacino, 2021. "The autophagy protein ATG9A enables lipid mobilization from lipid droplets," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    5. Marie Villares & Nelly Lourenço & Ivan Ktorza & Jérémy Berthelet & Aristeidis Panagiotou & Aurélie Richard & Angélique Amo & Yulianna Koziy & Souhila Medjkane & Sergio Valente & Rossella Fioravanti & , 2024. "Theileria parasites sequester host eIF5A to escape elimination by host-mediated autophagy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Wenjun Wang & Junyang Tan & Xiaomin Liu & Wenqi Guo & Mengmeng Li & Xinjie Liu & Yanyan Liu & Wenyu Dai & Liubing Hu & Yimin Wang & Qiuxia Lu & Wen Xing Lee & Hong-Wen Tang & Qinghua Zhou, 2023. "Cytoplasmic Endonuclease G promotes nonalcoholic fatty liver disease via mTORC2-AKT-ACLY and endoplasmic reticulum stress," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Guanlan Hu & Catriona Ling & Lijun Chi & Mehakpreet K. Thind & Samuel Furse & Albert Koulman & Jonathan R. Swann & Dorothy Lee & Marjolein M. Calon & Celine Bourdon & Christian J. Versloot & Barbara M, 2022. "The role of the tryptophan-NAD + pathway in a mouse model of severe malnutrition induced liver dysfunction," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Julian C. Lui & Adalbert Raimann & Hironori Hojo & Lijin Dong & Paul Roschger & Bijal Kikani & Uwe Wintergerst & Nadja Fratzl-Zelman & Youn Hee Jee & Gabriele Haeusler & Jeffrey Baron, 2022. "A neomorphic variant in SP7 alters sequence specificity and causes a high-turnover bone disorder," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Kaushal Asrani & Juhyung Woo & Adrianna A. Mendes & Ethan Schaffer & Thiago Vidotto & Clarence Rachel Villanueva & Kewen Feng & Lia Oliveira & Sanjana Murali & Hans B. Liu & Daniela C. Salles & Brando, 2022. "An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Youping Lin & Haixu Chen & Lei Wang & Jiaojiao Su & Junbo Li & Xin Huang, 2024. "Lipase activated endocytosis-like behavior of oil-in-water emulsion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Logan Brase & Shih-Feng You & Ricardo D’Oliveira Albanus & Jorge L. Del-Aguila & Yaoyi Dai & Brenna C. Novotny & Carolina Soriano-Tarraga & Taitea Dykstra & Maria Victoria Fernandez & John P. Budde & , 2023. "Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Yun Seok Kim & Bongsub Ko & Da Jung Kim & Jihoon Tak & Chang Yeob Han & Joo-Youn Cho & Won Kim & Sang Geon Kim, 2022. "Induction of the hepatic aryl hydrocarbon receptor by alcohol dysregulates autophagy and phospholipid metabolism via PPP2R2D," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Denisa Margină & Anca Ungurianu & Carmen Purdel & Dimitris Tsoukalas & Evangelia Sarandi & Maria Thanasoula & Fotios Tekos & Robin Mesnage & Demetrios Kouretas & Aristidis Tsatsakis, 2020. "Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors," IJERPH, MDPI, vol. 17(11), pages 1-27, June.
    14. Hejazi Keyvan & Fathi Mehrdad & Salkhord Mahsa & Dastani Maryam, 2021. "The Effect of Eight Weeks of Combined Training (Endurance-Intermittent Resistance and Endurance-Continuous Resistance) on Coagulation, Fibrinolytic and Lipid Profiles of Overweight Women," Polish Journal of Sport and Tourism, Sciendo, vol. 28(4), pages 3-9, December.
    15. Zhen Yuan & Kun Cai & Jiajia Li & Ruifeng Chen & Fuhai Zhang & Xuan Tan & Yaming Jiu & Haishuang Chang & Bing Hu & Weiyi Zhang & Binbin Ding, 2024. "ATG14 targets lipid droplets and acts as an autophagic receptor for syntaxin18-regulated lipid droplet turnover," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. King Hang Tommy Mau & Donja Karimlou & David Barneda & Vincent Brochard & Christophe Royer & Bryony Leeke & Roshni A. Souza & Mélanie Pailles & Michelle Percharde & Shankar Srinivas & Alice Jouneau & , 2022. "Dynamic enlargement and mobilization of lipid droplets in pluripotent cells coordinate morphogenesis during mouse peri-implantation development," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Odeta Meçe & Diede Houbaert & Maria-Livia Sassano & Tania Durré & Hannelore Maes & Marco Schaaf & Sanket More & Maarten Ganne & Melissa García-Caballero & Mila Borri & Jelle Verhoeven & Madhur Agrawal, 2022. "Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    18. Xiaowei Sun & Jie Shen & Norbert Perrimon & Xue Kong & Dan Wang, 2023. "The endoribonuclease Arlr is required to maintain lipid homeostasis by downregulating lipolytic genes during aging," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Zhenzhen Zi & Zhuzhen Zhang & Qiang Feng & Chiho Kim & Xu-Dong Wang & Philipp E. Scherer & Jinming Gao & Beth Levine & Yonghao Yu, 2022. "Quantitative phosphoproteomic analyses identify STK11IP as a lysosome-specific substrate of mTORC1 that regulates lysosomal acidification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Dengqin Zhong & Ruiyun Wang & Hongjing Zhang & Mengmeng Wang & Xuxia Zhang & Honghong Chen, 2023. "Induction of lysosomal exocytosis and biogenesis via TRPML1 activation for the treatment of uranium-induced nephrotoxicity," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56936-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.