IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33402-w.html
   My bibliography  Save this article

TraB family proteins are components of ER-mitochondrial contact sites and regulate ER-mitochondrial interactions and mitophagy

Author

Listed:
  • Chengyang Li

    (Huazhong Agricultural University
    Hubei Hongshan Laboratory)

  • Patrick Duckney

    (Durham University)

  • Tong Zhang

    (Huazhong Agricultural University
    Hubei Hongshan Laboratory)

  • Yanshu Fu

    (Huazhong Agricultural University
    Hubei Hongshan Laboratory)

  • Xin Li

    (Huazhong Agricultural University)

  • Johan Kroon

    (Durham University)

  • Geert Jaeger

    (Ghent University
    VIB Center for Plant Systems Biology)

  • Yunjiang Cheng

    (Huazhong Agricultural University)

  • Patrick J. Hussey

    (Durham University)

  • Pengwei Wang

    (Huazhong Agricultural University
    Hubei Hongshan Laboratory)

Abstract

ER-mitochondrial contact sites (EMCSs) are important for mitochondrial function. Here, we have identified a EMCS complex, comprising a family of uncharacterised mitochondrial outer membrane proteins, TRB1, TRB2, and the ER protein, VAP27-1. In Arabidopsis, there are three TraB family isoforms and the trb1/trb2 double mutant exhibits abnormal mitochondrial morphology, strong starch accumulation, and impaired energy metabolism, indicating that these proteins are essential for normal mitochondrial function. Moreover, TRB1 and TRB2 proteins also interact with ATG8 in order to regulate mitochondrial degradation (mitophagy). The turnover of depolarised mitochondria is significantly reduced in both trb1/trb2 and VAP27 mutants (vap27-1,3,4,6) under mitochondrial stress conditions, with an increased population of dysfunctional mitochondria present in the cytoplasm. Consequently, plant recovery after stress is significantly perturbed, suggesting that TRB1-regulated mitophagy and ER-mitochondrial interaction are two closely related processes. Taken together, we ascribe a dual role to TraB family proteins which are component of the EMCS complex in eukaryotes, regulating both interaction of the mitochondria to the ER and mitophagy.

Suggested Citation

  • Chengyang Li & Patrick Duckney & Tong Zhang & Yanshu Fu & Xin Li & Johan Kroon & Geert Jaeger & Yunjiang Cheng & Patrick J. Hussey & Pengwei Wang, 2022. "TraB family proteins are components of ER-mitochondrial contact sites and regulate ER-mitochondrial interactions and mitophagy," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33402-w
    DOI: 10.1038/s41467-022-33402-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33402-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33402-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maho Hamasaki & Nobumichi Furuta & Atsushi Matsuda & Akiko Nezu & Akitsugu Yamamoto & Naonobu Fujita & Hiroko Oomori & Takeshi Noda & Tokuko Haraguchi & Yasushi Hiraoka & Atsuo Amano & Tamotsu Yoshimo, 2013. "Autophagosomes form at ER–mitochondria contact sites," Nature, Nature, vol. 495(7441), pages 389-393, March.
    2. Faiz Rasul & Fan Zheng & Fenfen Dong & Jiajia He & Ling Liu & Wenyue Liu & Javairia Yousuf Cheema & Wenfan Wei & Chuanhai Fu, 2021. "Emr1 regulates the number of foci of the endoplasmic reticulum-mitochondria encounter structure complex," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Pengwei Wang & Roman Pleskot & Jingze Zang & Joanna Winkler & Jie Wang & Klaas Yperman & Tong Zhang & Kun Wang & Jinli Gong & Yajie Guan & Christine Richardson & Patrick Duckney & Michael Vandorpe & E, 2019. "Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    4. Rajat Puri & Xiu-Tang Cheng & Mei-Yao Lin & Ning Huang & Zu-Hang Sheng, 2019. "Mul1 restrains Parkin-mediated mitophagy in mature neurons by maintaining ER-mitochondrial contacts," Nature Communications, Nature, vol. 10(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luciana Renna & Giovanni Stefano & Maria Paola Puggioni & Sang-Jin Kim & Anastasiya Lavell & John E. Froehlich & Graham Burkart & Stefano Mancuso & Christoph Benning & Federica Brandizzi, 2024. "ER-associated VAP27-1 and VAP27-3 proteins functionally link the lipid-binding ORP2A at the ER-chloroplast contact sites," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Wei Chen & Chi Su & Chang-Yu Huang & Xuan-Rong Huang & Xiaojing Cuili & Tung Chao & Chun-Hsiang Fan & Cheng-Wei Ting & Yi-Wei Tsai & Kai-Chien Yang & Ti-Yen Yeh & Sung-Tsang Hsieh & Yi-Ju Chen & , 2024. "NME3 is a gatekeeper for DRP1-dependent mitophagy in hypoxia," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Lin-lin Zhao & Ru Chen & Ziyu Bai & Junyi Liu & Yuhao Zhang & Yicheng Zhong & Meng-xiang Sun & Peng Zhao, 2024. "Autophagy-mediated degradation of integumentary tapetum is critical for embryo pattern formation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Tong Zhang & Yifan Li & Chengyang Li & Jingze Zang & Erlin Gao & Johan T. Kroon & Xiaolu Qu & Patrick J. Hussey & Pengwei Wang, 2023. "Exo84c interacts with VAP27 to regulate exocytotic compartment degradation and stigma senescence," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Rodrigo Enrique Gomez & Clément Chambaud & Josselin Lupette & Julie Castets & Stéphanie Pascal & Lysiane Brocard & Lise Noack & Yvon Jaillais & Jérôme Joubès & Amélie Bernard, 2022. "Phosphatidylinositol-4-phosphate controls autophagosome formation in Arabidopsis thaliana," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Elodie Mailler & Carlos M. Guardia & Xiaofei Bai & Michal Jarnik & Chad D. Williamson & Yan Li & Nunziata Maio & Andy Golden & Juan S. Bonifacino, 2021. "The autophagy protein ATG9A enables lipid mobilization from lipid droplets," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    6. Luciana Renna & Giovanni Stefano & Maria Paola Puggioni & Sang-Jin Kim & Anastasiya Lavell & John E. Froehlich & Graham Burkart & Stefano Mancuso & Christoph Benning & Federica Brandizzi, 2024. "ER-associated VAP27-1 and VAP27-3 proteins functionally link the lipid-binding ORP2A at the ER-chloroplast contact sites," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Timothy J. Hawkins & Michaela Kopischke & Patrick J. Duckney & Katarzyna Rybak & David A. Mentlak & Johan T. M. Kroon & Mai Thu Bui & A. Christine Richardson & Mary Casey & Agnieszka Alexander & Geert, 2023. "NET4 and RabG3 link actin to the tonoplast and facilitate cytoskeletal remodelling during stomatal immunity," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Ji-Man Park & Da-Hye Lee & Do-Hyung Kim, 2023. "Redefining the role of AMPK in autophagy and the energy stress response," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Keisuke Tabata & Kenta Imai & Koki Fukuda & Kentaro Yamamoto & Hayato Kunugi & Toshiharu Fujita & Tatsuya Kaminishi & Christian Tischer & Beate Neumann & Sabine Reither & Fatima Verissimo & Rainer Pep, 2024. "Palmitoylation of ULK1 by ZDHHC13 plays a crucial role in autophagy," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. José Cerca & Bent Petersen & José Miguel Lazaro-Guevara & Angel Rivera-Colón & Siri Birkeland & Joel Vizueta & Siyu Li & Qionghou Li & João Loureiro & Chatchai Kosawang & Patricia Jaramillo Díaz & Gon, 2022. "The genomic basis of the plant island syndrome in Darwin’s giant daisies," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Viola Nähse & Camilla Raiborg & Kia Wee Tan & Sissel Mørk & Maria Lyngaas Torgersen & Eva Maria Wenzel & Mireia Nager & Veijo T. Salo & Terje Johansen & Elina Ikonen & Kay Oliver Schink & Harald Stenm, 2023. "ATPase activity of DFCP1 controls selective autophagy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33402-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.