IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26921-5.html
   My bibliography  Save this article

Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data

Author

Listed:
  • Vishu Gupta

    (Northwestern University)

  • Kamal Choudhary

    (National Institute of Standards and Technology
    Theiss Research)

  • Francesca Tavazza

    (National Institute of Standards and Technology)

  • Carelyn Campbell

    (National Institute of Standards and Technology)

  • Wei-keng Liao

    (Northwestern University)

  • Alok Choudhary

    (Northwestern University)

  • Ankit Agrawal

    (Northwestern University)

Abstract

Artificial intelligence (AI) and machine learning (ML) have been increasingly used in materials science to build predictive models and accelerate discovery. For selected properties, availability of large databases has also facilitated application of deep learning (DL) and transfer learning (TL). However, unavailability of large datasets for a majority of properties prohibits widespread application of DL/TL. We present a cross-property deep-transfer-learning framework that leverages models trained on large datasets to build models on small datasets of different properties. We test the proposed framework on 39 computational and two experimental datasets and find that the TL models with only elemental fractions as input outperform ML/DL models trained from scratch even when they are allowed to use physical attributes as input, for 27/39 (≈ 69%) computational and both the experimental datasets. We believe that the proposed framework can be widely useful to tackle the small data challenge in applying AI/ML in materials science.

Suggested Citation

  • Vishu Gupta & Kamal Choudhary & Francesca Tavazza & Carelyn Campbell & Wei-keng Liao & Alok Choudhary & Ankit Agrawal, 2021. "Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26921-5
    DOI: 10.1038/s41467-021-26921-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26921-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26921-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keith T. Butler & Daniel W. Davies & Hugh Cartwright & Olexandr Isayev & Aron Walsh, 2018. "Machine learning for molecular and materials science," Nature, Nature, vol. 559(7715), pages 547-555, July.
    2. Dezhen Xue & Prasanna V. Balachandran & John Hogden & James Theiler & Deqing Xue & Turab Lookman, 2016. "Accelerated search for materials with targeted properties by adaptive design," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    3. Rhys E. A. Goodall & Alpha A. Lee, 2020. "Predicting materials properties without crystal structure: deep representation learning from stoichiometry," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Dipendra Jha & Kamal Choudhary & Francesca Tavazza & Wei-keng Liao & Alok Choudhary & Carelyn Campbell & Ankit Agrawal, 2019. "Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuwei Mao & Hui Lin & Christina Xuan Yu & Roger Frye & Darren Beckett & Kevin Anderson & Lars Jacquemetton & Fred Carter & Zhangyuan Gao & Wei-keng Liao & Alok N. Choudhary & Kornel Ehmann & Ankit Agr, 2023. "A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 315-329, January.
    2. Ce Yang & Haiyan Wang & Jiaxin Bai & Tiancheng He & Huhu Cheng & Tianlei Guang & Houze Yao & Liangti Qu, 2022. "Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shufeng Kong & Francesco Ricci & Dan Guevarra & Jeffrey B. Neaton & Carla P. Gomes & John M. Gregoire, 2022. "Density of states prediction for materials discovery via contrastive learning from probabilistic embeddings," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Tian Xie & Arthur France-Lanord & Yanming Wang & Jeffrey Lopez & Michael A. Stolberg & Megan Hill & Graham Michael Leverick & Rafael Gomez-Bombarelli & Jeremiah A. Johnson & Yang Shao-Horn & Jeffrey C, 2022. "Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Han Li & Ruotian Zhang & Yaosen Min & Dacheng Ma & Dan Zhao & Jianyang Zeng, 2023. "A knowledge-guided pre-training framework for improving molecular representation learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    6. Seeram Ramakrishna & Tong-Yi Zhang & Wen-Cong Lu & Quan Qian & Jonathan Sze Choong Low & Jeremy Heiarii Ronald Yune & Daren Zong Loong Tan & Stéphane Bressan & Stefano Sanvito & Surya R. Kalidindi, 2019. "Materials informatics," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2307-2326, August.
    7. Niklas W. A. Gebauer & Michael Gastegger & Stefaan S. P. Hessmann & Klaus-Robert Müller & Kristof T. Schütt, 2022. "Inverse design of 3d molecular structures with conditional generative neural networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Gang Wang & Shinya Mine & Duotian Chen & Yuan Jing & Kah Wei Ting & Taichi Yamaguchi & Motoshi Takao & Zen Maeno & Ichigaku Takigawa & Koichi Matsushita & Ken-ichi Shimizu & Takashi Toyao, 2023. "Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Huziel E. Sauceda & Luis E. Gálvez-González & Stefan Chmiela & Lauro Oliver Paz-Borbón & Klaus-Robert Müller & Alexandre Tkatchenko, 2022. "BIGDML—Towards accurate quantum machine learning force fields for materials," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Sukriti Manna & Troy D. Loeffler & Rohit Batra & Suvo Banik & Henry Chan & Bilvin Varughese & Kiran Sasikumar & Michael Sternberg & Tom Peterka & Mathew J. Cherukara & Stephen K. Gray & Bobby G. Sumpt, 2022. "Learning in continuous action space for developing high dimensional potential energy models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Efrat Taig & Ohad Ben-Shahar, 2019. "Gradient Surfing: A New Deterministic Approach for Low-Dimensional Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 855-878, March.
    12. Yuwei Mao & Hui Lin & Christina Xuan Yu & Roger Frye & Darren Beckett & Kevin Anderson & Lars Jacquemetton & Fred Carter & Zhangyuan Gao & Wei-keng Liao & Alok N. Choudhary & Kornel Ehmann & Ankit Agr, 2023. "A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 315-329, January.
    13. Ribeiro, Haroldo V. & Lopes, Diego D. & Pessa, Arthur A.B. & Martins, Alvaro F. & da Cunha, Bruno R. & Gonçalves, Sebastián & Lenzi, Ervin K. & Hanley, Quentin S. & Perc, Matjaž, 2023. "Deep learning criminal networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    14. Zeyin Yan & Dacong Wei & Xin Li & Lung Wa Chung, 2024. "Accelerating reliable multiscale quantum refinement of protein–drug systems enabled by machine learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Kangming Li & Daniel Persaud & Kamal Choudhary & Brian DeCost & Michael Greenwood & Jason Hattrick-Simpers, 2023. "Exploiting redundancy in large materials datasets for efficient machine learning with less data," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Pessa, Arthur A.B. & Zola, Rafael S. & Perc, Matjaž & Ribeiro, Haroldo V., 2022. "Determining liquid crystal properties with ordinal networks and machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    18. Kai Li & Jifeng Wang & Yuanyuan Song & Ying Wang, 2023. "Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Yasuhiro Yoshikai & Tadahaya Mizuno & Shumpei Nemoto & Hiroyuki Kusuhara, 2024. "Difficulty in chirality recognition for Transformer architectures learning chemical structures from string representations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26921-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.