IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55613-z.html
   My bibliography  Save this article

Inverse design of promising electrocatalysts for CO2 reduction via generative models and bird swarm algorithm

Author

Listed:
  • Zhilong Song

    (Southeast University)

  • Linfeng Fan

    (Southeast University
    Suzhou Laboratory)

  • Shuaihua Lu

    (Southeast University)

  • Chongyi Ling

    (Southeast University)

  • Qionghua Zhou

    (Southeast University
    Suzhou Laboratory)

  • Jinlan Wang

    (Southeast University
    Suzhou Laboratory)

Abstract

Directly generating material structures with optimal properties is a long-standing goal in material design. Traditional generative models often struggle to efficiently explore the global chemical space, limiting their utility to localized space. Here, we present a framework named Material Generation with Efficient Global Chemical Space Search (MAGECS) that addresses this challenge by integrating the bird swarm algorithm and supervised graph neural networks, enabling effective navigation of generative models in the immense chemical space towards materials with target properties. Applied to the design of alloy electrocatalysts for CO2 reduction (CO2RR), MAGECS generates over 250,000 structures, achieving a 2.5-fold increase in high-activity structures (35%) compared to random generation. Five predicted alloys— CuAl, AlPd, Sn2Pd5, Sn9Pd7, and CuAlSe2 are synthesized and characterized, with two showing around 90% Faraday efficiency for CO2RR. This work highlights the potential of MAGECS to revolutionize functional material development, paving the way for fully automated, artificial intelligence-driven material design.

Suggested Citation

  • Zhilong Song & Linfeng Fan & Shuaihua Lu & Chongyi Ling & Qionghua Zhou & Jinlan Wang, 2025. "Inverse design of promising electrocatalysts for CO2 reduction via generative models and bird swarm algorithm," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55613-z
    DOI: 10.1038/s41467-024-55613-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55613-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55613-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miao Zhong & Kevin Tran & Yimeng Min & Chuanhao Wang & Ziyun Wang & Cao-Thang Dinh & Phil De Luna & Zongqian Yu & Armin Sedighian Rasouli & Peter Brodersen & Song Sun & Oleksandr Voznyy & Chih-Shan Ta, 2020. "Accelerated discovery of CO2 electrocatalysts using active machine learning," Nature, Nature, vol. 581(7807), pages 178-183, May.
    2. Xinyan Liu & Jianping Xiao & Hongjie Peng & Xin Hong & Karen Chan & Jens K. Nørskov, 2017. "Understanding trends in electrochemical carbon dioxide reduction rates," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    3. Baicheng Weng & Zhilong Song & Rilong Zhu & Qingyu Yan & Qingde Sun & Corey G. Grice & Yanfa Yan & Wan-Jian Yin, 2020. "Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Keith T. Butler & Daniel W. Davies & Hugh Cartwright & Olexandr Isayev & Aron Walsh, 2018. "Machine learning for molecular and materials science," Nature, Nature, vol. 559(7715), pages 547-555, July.
    5. Shuaihua Lu & Qionghua Zhou & Yixin Ouyang & Yilv Guo & Qiang Li & Jinlan Wang, 2018. "Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    6. Pingping Zhang & Gaoling Yang & Fei Li & Jianbing Shi & Haizheng Zhong, 2022. "Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Chen & Shuaihua Lu & Qian Chen & Qionghua Zhou & Jinlan Wang, 2024. "From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Dong Hyeon Mok & Hong Li & Guiru Zhang & Chaehyeon Lee & Kun Jiang & Seoin Back, 2023. "Data-driven discovery of electrocatalysts for CO2 reduction using active motifs-based machine learning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Kangming Li & Daniel Persaud & Kamal Choudhary & Brian DeCost & Michael Greenwood & Jason Hattrick-Simpers, 2023. "Exploiting redundancy in large materials datasets for efficient machine learning with less data," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Jiawei Li & Hongliang Zeng & Xue Dong & Yimin Ding & Sunpei Hu & Runhao Zhang & Yizhou Dai & Peixin Cui & Zhou Xiao & Donghao Zhao & Liujiang Zhou & Tingting Zheng & Jianping Xiao & Jie Zeng & Chuan X, 2023. "Selective CO2 electrolysis to CO using isolated antimony alloyed copper," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Stefan Ringe, 2023. "The importance of a charge transfer descriptor for screening potential CO2 reduction electrocatalysts," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Yilei Wu & Chang-Feng Wang & Ming-Gang Ju & Qiangqiang Jia & Qionghua Zhou & Shuaihua Lu & Xinying Gao & Yi Zhang & Jinlan Wang, 2024. "Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Manu Suvarna & Tangsheng Zou & Sok Ho Chong & Yuzhen Ge & Antonio J. Martín & Javier Pérez-Ramírez, 2024. "Active learning streamlines development of high performance catalysts for higher alcohol synthesis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Xiaoyun Lin & Xiaowei Du & Shican Wu & Shiyu Zhen & Wei Liu & Chunlei Pei & Peng Zhang & Zhi-Jian Zhao & Jinlong Gong, 2024. "Machine learning-assisted dual-atom sites design with interpretable descriptors unifying electrocatalytic reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Luozhijie Jin & Zijian Du & Le Shu & Yan Cen & Yuanfeng Xu & Yongfeng Mei & Hao Zhang, 2025. "Transformer-generated atomic embeddings to enhance prediction accuracy of crystal properties with machine learning," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Kihoon Bang & Doosun Hong & Youngtae Park & Donghun Kim & Sang Soo Han & Hyuck Mo Lee, 2023. "Machine learning-enabled exploration of the electrochemical stability of real-scale metallic nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Chen, Jiateng & Xu, Le & Shen, Boxiong, 2024. "Recent advances in tandem electrocatalysis of carbon dioxide: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    13. Han Li & Ruotian Zhang & Yaosen Min & Dacheng Ma & Dan Zhao & Jianyang Zeng, 2023. "A knowledge-guided pre-training framework for improving molecular representation learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    16. Wang, Zixuan & Chen, Zijian & Wang, Boyuan & Wu, Chuang & Zhou, Chao & Peng, Yang & Zhang, Xinyu & Ni, Zongming & Chung, Chi-yung & Chan, Ching-chuen & Yang, Jian & Zhao, Haitao, 2025. "Digital manufacturing of perovskite materials and solar cells," Applied Energy, Elsevier, vol. 377(PB).
    17. Niklas W. A. Gebauer & Michael Gastegger & Stefaan S. P. Hessmann & Klaus-Robert Müller & Kristof T. Schütt, 2022. "Inverse design of 3d molecular structures with conditional generative neural networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Yao, Qiuxiang & Wang, Linyang & Ma, Mingming & Ma, Li & He, Lei & Ma, Duo & Sun, Ming, 2024. "A quantitative investigation on pyrolysis behaviors of metal ion-exchanged coal macerals by interpretable machine learning algorithms," Energy, Elsevier, vol. 300(C).
    19. Yong Zhang & Feifei Chen & Xinyi Yang & Yiran Guo & Xinghua Zhang & Hong Dong & Weihua Wang & Feng Lu & Zunming Lu & Hui Liu & Hui Liu & Yao Xiao & Yahui Cheng, 2025. "Electronic metal-support interaction modulates Cu electronic structures for CO2 electroreduction to desired products," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    20. Gang Wang & Shinya Mine & Duotian Chen & Yuan Jing & Kah Wei Ting & Taichi Yamaguchi & Motoshi Takao & Zen Maeno & Ichigaku Takigawa & Koichi Matsushita & Ken-ichi Shimizu & Takashi Toyao, 2023. "Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55613-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.