IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28543-x.html
   My bibliography  Save this article

Density of states prediction for materials discovery via contrastive learning from probabilistic embeddings

Author

Listed:
  • Shufeng Kong

    (Cornell University)

  • Francesco Ricci

    (Lawrence Berkeley National Laboratory)

  • Dan Guevarra

    (California Institute of Technology)

  • Jeffrey B. Neaton

    (Lawrence Berkeley National Laboratory
    University of California, Berkeley
    Kavli Energy NanoSciences Institute at Berkeley)

  • Carla P. Gomes

    (Cornell University)

  • John M. Gregoire

    (California Institute of Technology)

Abstract

Machine learning for materials discovery has largely focused on predicting an individual scalar rather than multiple related properties, where spectral properties are an important example. Fundamental spectral properties include the phonon density of states (phDOS) and the electronic density of states (eDOS), which individually or collectively are the origins of a breadth of materials observables and functions. Building upon the success of graph attention networks for encoding crystalline materials, we introduce a probabilistic embedding generator specifically tailored to the prediction of spectral properties. Coupled with supervised contrastive learning, our materials-to-spectrum (Mat2Spec) model outperforms state-of-the-art methods for predicting ab initio phDOS and eDOS for crystalline materials. We demonstrate Mat2Spec’s ability to identify eDOS gaps below the Fermi energy, validating predictions with ab initio calculations and thereby discovering candidate thermoelectrics and transparent conductors. Mat2Spec is an exemplar framework for predicting spectral properties of materials via strategically incorporated machine learning techniques.

Suggested Citation

  • Shufeng Kong & Francesco Ricci & Dan Guevarra & Jeffrey B. Neaton & Carla P. Gomes & John M. Gregoire, 2022. "Density of states prediction for materials discovery via contrastive learning from probabilistic embeddings," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28543-x
    DOI: 10.1038/s41467-022-28543-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28543-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28543-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rhys E. A. Goodall & Alpha A. Lee, 2020. "Predicting materials properties without crystal structure: deep representation learning from stoichiometry," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Keith T. Butler & Daniel W. Davies & Hugh Cartwright & Olexandr Isayev & Aron Walsh, 2018. "Machine learning for molecular and materials science," Nature, Nature, vol. 559(7715), pages 547-555, July.
    3. Vahe Tshitoyan & John Dagdelen & Leigh Weston & Alexander Dunn & Ziqin Rong & Olga Kononova & Kristin A. Persson & Gerbrand Ceder & Anubhav Jain, 2019. "Unsupervised word embeddings capture latent knowledge from materials science literature," Nature, Nature, vol. 571(7763), pages 95-98, July.
    4. Morten N. Gjerding & Mohnish Pandey & Kristian S. Thygesen, 2017. "Band structure engineered layered metals for low-loss plasmonics," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    5. Olexandr Isayev & Corey Oses & Cormac Toher & Eric Gossett & Stefano Curtarolo & Alexander Tropsha, 2017. "Universal fragment descriptors for predicting properties of inorganic crystals," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pessa, Arthur A.B. & Zola, Rafael S. & Perc, Matjaž & Ribeiro, Haroldo V., 2022. "Determining liquid crystal properties with ordinal networks and machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Vishu Gupta & Kamal Choudhary & Francesca Tavazza & Carelyn Campbell & Wei-keng Liao & Alok Choudhary & Ankit Agrawal, 2021. "Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Mojan Omidvar & Hangfeng Zhang & Achintha Avin Ihalage & Theo Graves Saunders & Henry Giddens & Michael Forrester & Sajad Haq & Yang Hao, 2024. "Accelerated discovery of perovskite solid solutions through automated materials synthesis and characterization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Yan Duan & Lorena E. Rosaleny & Joana T. Coutinho & Silvia Giménez-Santamarina & Allen Scheie & José J. Baldoví & Salvador Cardona-Serra & Alejandro Gaita-Ariño, 2022. "Data-driven design of molecular nanomagnets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Ananthan Nambiar & Tobias Rubel & James McCaull & Jon deVries & Mark Bedau, 2021. "Dropping diversity of products of large US firms: Models and measures," Papers 2110.08367, arXiv.org.
    6. Han Li & Ruotian Zhang & Yaosen Min & Dacheng Ma & Dan Zhao & Jianyang Zeng, 2023. "A knowledge-guided pre-training framework for improving molecular representation learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Jason Youn & Navneet Rai & Ilias Tagkopoulos, 2022. "Knowledge integration and decision support for accelerated discovery of antibiotic resistance genes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    10. Xinyu Chen & Shuaihua Lu & Qian Chen & Qionghua Zhou & Jinlan Wang, 2024. "From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Niklas W. A. Gebauer & Michael Gastegger & Stefaan S. P. Hessmann & Klaus-Robert Müller & Kristof T. Schütt, 2022. "Inverse design of 3d molecular structures with conditional generative neural networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Zongrui Pei & Junqi Yin & Peter K. Liaw & Dierk Raabe, 2023. "Toward the design of ultrahigh-entropy alloys via mining six million texts," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Shaoshuo Li & Baixing Chen & Hao Chen & Zhen Hua & Yang Shao & Heng Yin & Jianwei Wang, 2021. "Analysis of potential genetic biomarkers and molecular mechanism of smoking-related postmenopausal osteoporosis using weighted gene co-expression network analysis and machine learning," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-18, September.
    14. Gang Wang & Shinya Mine & Duotian Chen & Yuan Jing & Kah Wei Ting & Taichi Yamaguchi & Motoshi Takao & Zen Maeno & Ichigaku Takigawa & Koichi Matsushita & Ken-ichi Shimizu & Takashi Toyao, 2023. "Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. John Dagdelen & Alexander Dunn & Sanghoon Lee & Nicholas Walker & Andrew S. Rosen & Gerbrand Ceder & Kristin A. Persson & Anubhav Jain, 2024. "Structured information extraction from scientific text with large language models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Huziel E. Sauceda & Luis E. Gálvez-González & Stefan Chmiela & Lauro Oliver Paz-Borbón & Klaus-Robert Müller & Alexandre Tkatchenko, 2022. "BIGDML—Towards accurate quantum machine learning force fields for materials," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Sukriti Manna & Troy D. Loeffler & Rohit Batra & Suvo Banik & Henry Chan & Bilvin Varughese & Kiran Sasikumar & Michael Sternberg & Tom Peterka & Mathew J. Cherukara & Stephen K. Gray & Bobby G. Sumpt, 2022. "Learning in continuous action space for developing high dimensional potential energy models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Ribeiro, Haroldo V. & Lopes, Diego D. & Pessa, Arthur A.B. & Martins, Alvaro F. & da Cunha, Bruno R. & Gonçalves, Sebastián & Lenzi, Ervin K. & Hanley, Quentin S. & Perc, Matjaž, 2023. "Deep learning criminal networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    19. Jianhong Luo & Minjuan Chai & Xuwei Pan, 2021. "Identification of Research Priorities during the COVID-19 Pandemic: Implications for Its Management," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    20. Zeyin Yan & Dacong Wei & Xin Li & Lung Wa Chung, 2024. "Accelerating reliable multiscale quantum refinement of protein–drug systems enabled by machine learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28543-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.