IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19964-7.html
   My bibliography  Save this article

Predicting materials properties without crystal structure: deep representation learning from stoichiometry

Author

Listed:
  • Rhys E. A. Goodall

    (University of Cambridge, Cavendish Laboratory)

  • Alpha A. Lee

    (University of Cambridge, Cavendish Laboratory)

Abstract

Machine learning has the potential to accelerate materials discovery by accurately predicting materials properties at a low computational cost. However, the model inputs remain a key stumbling block. Current methods typically use descriptors constructed from knowledge of either the full crystal structure — therefore only applicable to materials with already characterised structures — or structure-agnostic fixed-length representations hand-engineered from the stoichiometry. We develop a machine learning approach that takes only the stoichiometry as input and automatically learns appropriate and systematically improvable descriptors from data. Our key insight is to treat the stoichiometric formula as a dense weighted graph between elements. Compared to the state of the art for structure-agnostic methods, our approach achieves lower errors with less data.

Suggested Citation

  • Rhys E. A. Goodall & Alpha A. Lee, 2020. "Predicting materials properties without crystal structure: deep representation learning from stoichiometry," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19964-7
    DOI: 10.1038/s41467-020-19964-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19964-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19964-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vishu Gupta & Kamal Choudhary & Francesca Tavazza & Carelyn Campbell & Wei-keng Liao & Alok Choudhary & Ankit Agrawal, 2021. "Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Shufeng Kong & Francesco Ricci & Dan Guevarra & Jeffrey B. Neaton & Carla P. Gomes & John M. Gregoire, 2022. "Density of states prediction for materials discovery via contrastive learning from probabilistic embeddings," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Pushkar G. Ghanekar & Siddharth Deshpande & Jeffrey Greeley, 2022. "Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19964-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.