IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30994-1.html
   My bibliography  Save this article

Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties

Author

Listed:
  • Tian Xie

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Arthur France-Lanord

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Yanming Wang

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Jeffrey Lopez

    (Massachusetts Institute of Technology)

  • Michael A. Stolberg

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Megan Hill

    (Massachusetts Institute of Technology)

  • Graham Michael Leverick

    (Massachusetts Institute of Technology)

  • Rafael Gomez-Bombarelli

    (Massachusetts Institute of Technology)

  • Jeremiah A. Johnson

    (Massachusetts Institute of Technology)

  • Yang Shao-Horn

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Jeffrey C. Grossman

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

Polymer electrolytes are promising candidates for the next generation lithium-ion battery technology. Large scale screening of polymer electrolytes is hindered by the significant cost of molecular dynamics (MD) simulation in amorphous systems: the amorphous structure of polymers requires multiple, repeated sampling to reduce noise and the slow relaxation requires long simulation time for convergence. Here, we accelerate the screening with a multi-task graph neural network that learns from a large amount of noisy, unconverged, short MD data and a small number of converged, long MD data. We achieve accurate predictions of 4 different converged properties and screen a space of 6247 polymers that is orders of magnitude larger than previous computational studies. Further, we extract several design principles for polymer electrolytes and provide an open dataset for the community. Our approach could be applicable to a broad class of material discovery problems that involve the simulation of complex, amorphous materials.

Suggested Citation

  • Tian Xie & Arthur France-Lanord & Yanming Wang & Jeffrey Lopez & Michael A. Stolberg & Megan Hill & Graham Michael Leverick & Rafael Gomez-Bombarelli & Jeremiah A. Johnson & Yang Shao-Horn & Jeffrey C, 2022. "Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30994-1
    DOI: 10.1038/s41467-022-30994-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30994-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30994-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weike Ye & Chi Chen & Zhenbin Wang & Iek-Heng Chu & Shyue Ping Ong, 2018. "Deep neural networks for accurate predictions of crystal stability," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    2. Justin S. Smith & Benjamin T. Nebgen & Roman Zubatyuk & Nicholas Lubbers & Christian Devereux & Kipton Barros & Sergei Tretiak & Olexandr Isayev & Adrian E. Roitberg, 2019. "Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    3. Dipendra Jha & Kamal Choudhary & Francesca Tavazza & Wei-keng Liao & Alok Choudhary & Carelyn Campbell & Ankit Agrawal, 2019. "Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    4. Keith T. Butler & Daniel W. Davies & Hugh Cartwright & Olexandr Isayev & Aron Walsh, 2018. "Machine learning for molecular and materials science," Nature, Nature, vol. 559(7715), pages 547-555, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Chen & Shuaihua Lu & Qian Chen & Qionghua Zhou & Jinlan Wang, 2024. "From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Zeyin Yan & Dacong Wei & Xin Li & Lung Wa Chung, 2024. "Accelerating reliable multiscale quantum refinement of protein–drug systems enabled by machine learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Vishu Gupta & Kamal Choudhary & Francesca Tavazza & Carelyn Campbell & Wei-keng Liao & Alok Choudhary & Ankit Agrawal, 2021. "Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Han Li & Ruotian Zhang & Yaosen Min & Dacheng Ma & Dan Zhao & Jianyang Zeng, 2023. "A knowledge-guided pre-training framework for improving molecular representation learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. O. V. Mythreyi & M. Rohith Srinivaas & Tigga Amit Kumar & R. Jayaganthan, 2021. "Machine-Learning-Based Prediction of Corrosion Behavior in Additively Manufactured Inconel 718," Data, MDPI, vol. 6(8), pages 1-16, July.
    7. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    8. Snehi Shrestha & Kieran James Barvenik & Tianle Chen & Haochen Yang & Yang Li & Meera Muthachi Kesavan & Joshua M. Little & Hayden C. Whitley & Zi Teng & Yaguang Luo & Eleonora Tubaldi & Po-Yen Chen, 2024. "Machine intelligence accelerated design of conductive MXene aerogels with programmable properties," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Oscar Méndez-Lucio & Christos A. Nicolaou & Berton Earnshaw, 2024. "MolE: a foundation model for molecular graphs using disentangled attention," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Zhiyuan Han & An Chen & Zejian Li & Mengtian Zhang & Zhilong Wang & Lixue Yang & Runhua Gao & Yeyang Jia & Guanjun Ji & Zhoujie Lao & Xiao Xiao & Kehao Tao & Jing Gao & Wei Lv & Tianshuai Wang & Jinji, 2024. "Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Peikun Zheng & Roman Zubatyuk & Wei Wu & Olexandr Isayev & Pavlo O. Dral, 2021. "Artificial intelligence-enhanced quantum chemical method with broad applicability," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Shuai Jiang & Yi-Rong Liu & Teng Huang & Ya-Juan Feng & Chun-Yu Wang & Zhong-Quan Wang & Bin-Jing Ge & Quan-Sheng Liu & Wei-Ran Guang & Wei Huang, 2022. "Towards fully ab initio simulation of atmospheric aerosol nucleation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Niklas W. A. Gebauer & Michael Gastegger & Stefaan S. P. Hessmann & Klaus-Robert Müller & Kristof T. Schütt, 2022. "Inverse design of 3d molecular structures with conditional generative neural networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Gang Wang & Shinya Mine & Duotian Chen & Yuan Jing & Kah Wei Ting & Taichi Yamaguchi & Motoshi Takao & Zen Maeno & Ichigaku Takigawa & Koichi Matsushita & Ken-ichi Shimizu & Takashi Toyao, 2023. "Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Huziel E. Sauceda & Luis E. Gálvez-González & Stefan Chmiela & Lauro Oliver Paz-Borbón & Klaus-Robert Müller & Alexandre Tkatchenko, 2022. "BIGDML—Towards accurate quantum machine learning force fields for materials," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Sukriti Manna & Troy D. Loeffler & Rohit Batra & Suvo Banik & Henry Chan & Bilvin Varughese & Kiran Sasikumar & Michael Sternberg & Tom Peterka & Mathew J. Cherukara & Stephen K. Gray & Bobby G. Sumpt, 2022. "Learning in continuous action space for developing high dimensional potential energy models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Yuwei Mao & Hui Lin & Christina Xuan Yu & Roger Frye & Darren Beckett & Kevin Anderson & Lars Jacquemetton & Fred Carter & Zhangyuan Gao & Wei-keng Liao & Alok N. Choudhary & Kornel Ehmann & Ankit Agr, 2023. "A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 315-329, January.
    18. Cong, Jian & Ma, Tianzeng & Chang, Zheshao & Zhang, Qiangqiang & Akhatov, Jasurjon S. & Fu, Mingkai & Li, Xin, 2023. "Neural network and experimental thermodynamics study of YCrO3-δ for efficient solar thermochemical hydrogen production," Renewable Energy, Elsevier, vol. 213(C), pages 1-10.
    19. David Buterez & Jon Paul Janet & Steven J. Kiddle & Dino Oglic & Pietro Lió, 2024. "Transfer learning with graph neural networks for improved molecular property prediction in the multi-fidelity setting," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Ribeiro, Haroldo V. & Lopes, Diego D. & Pessa, Arthur A.B. & Martins, Alvaro F. & da Cunha, Bruno R. & Gonçalves, Sebastián & Lenzi, Ervin K. & Hanley, Quentin S. & Perc, Matjaž, 2023. "Deep learning criminal networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30994-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.