IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31093-x.html
   My bibliography  Save this article

BIGDML—Towards accurate quantum machine learning force fields for materials

Author

Listed:
  • Huziel E. Sauceda

    (Universidad Nacional Autónoma de México
    Technische Universität Berlin
    Technische Universität Berlin)

  • Luis E. Gálvez-González

    (Universidad de Sonora, Blvd. Luis Encinas & Rosales)

  • Stefan Chmiela

    (Technische Universität Berlin
    BIFOLD – Berlin Institute for the Foundations of Learning and Data)

  • Lauro Oliver Paz-Borbón

    (Universidad Nacional Autónoma de México)

  • Klaus-Robert Müller

    (Technische Universität Berlin
    BIFOLD – Berlin Institute for the Foundations of Learning and Data
    Google Research, Brain team
    Korea University, Anam-dong)

  • Alexandre Tkatchenko

    (University of Luxembourg)

Abstract

Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict their practical applicability to small subsets of chemical space or require exhaustive datasets for training. Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning (BIGDML) approach and demonstrate its ability to construct reliable force fields using a training set with just 10–200 geometries for materials including pristine and defect-containing 2D and 3D semiconductors and metals, as well as chemisorbed and physisorbed atomic and molecular adsorbates on surfaces. The BIGDML model employs the full relevant symmetry group for a given material, does not assume artificial atom types or localization of atomic interactions and exhibits high data efficiency and state-of-the-art energy accuracies (errors substantially below 1 meV per atom) for an extended set of materials. Extensive path-integral molecular dynamics carried out with BIGDML models demonstrate the counterintuitive localization of benzene–graphene dynamics induced by nuclear quantum effects and their strong contributions to the hydrogen diffusion coefficient in a Pd crystal for a wide range of temperatures.

Suggested Citation

  • Huziel E. Sauceda & Luis E. Gálvez-González & Stefan Chmiela & Lauro Oliver Paz-Borbón & Klaus-Robert Müller & Alexandre Tkatchenko, 2022. "BIGDML—Towards accurate quantum machine learning force fields for materials," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31093-x
    DOI: 10.1038/s41467-022-31093-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31093-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31093-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Volker L. Deringer & Noam Bernstein & Gábor Csányi & Chiheb Mahmoud & Michele Ceriotti & Mark Wilson & David A. Drabold & Stephen R. Elliott, 2021. "Origins of structural and electronic transitions in disordered silicon," Nature, Nature, vol. 589(7840), pages 59-64, January.
    2. O. Anatole von Lilienfeld & Kieron Burke, 2020. "Retrospective on a decade of machine learning for chemical discovery," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    3. Bingqing Cheng & Guglielmo Mazzola & Chris J. Pickard & Michele Ceriotti, 2020. "Evidence for supercritical behaviour of high-pressure liquid hydrogen," Nature, Nature, vol. 585(7824), pages 217-220, September.
    4. George H. Booth & Andreas Grüneis & Georg Kresse & Ali Alavi, 2013. "Towards an exact description of electronic wavefunctions in real solids," Nature, Nature, vol. 493(7432), pages 365-370, January.
    5. Alexandre Tkatchenko, 2020. "Machine learning for chemical discovery," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    6. Tsz Wai Ko & Jonas A. Finkler & Stefan Goedecker & Jörg Behler, 2021. "A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Stefan Chmiela & Huziel E. Sauceda & Klaus-Robert Müller & Alexandre Tkatchenko, 2018. "Towards exact molecular dynamics simulations with machine-learned force fields," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    8. Keith T. Butler & Daniel W. Davies & Hugh Cartwright & Olexandr Isayev & Aron Walsh, 2018. "Machine learning for molecular and materials science," Nature, Nature, vol. 559(7715), pages 547-555, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Thorben Frank & Oliver T. Unke & Klaus-Robert Müller & Stefan Chmiela, 2024. "A Euclidean transformer for fast and stable machine learned force fields," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Adil Kabylda & Valentin Vassilev-Galindo & Stefan Chmiela & Igor Poltavsky & Alexandre Tkatchenko, 2023. "Efficient interatomic descriptors for accurate machine learning force fields of extended molecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Yaolong Zhang & Bin Jiang, 2023. "Universal machine learning for the response of atomistic systems to external fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adil Kabylda & Valentin Vassilev-Galindo & Stefan Chmiela & Igor Poltavsky & Alexandre Tkatchenko, 2023. "Efficient interatomic descriptors for accurate machine learning force fields of extended molecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Han Li & Ruotian Zhang & Yaosen Min & Dacheng Ma & Dan Zhao & Jianyang Zeng, 2023. "A knowledge-guided pre-training framework for improving molecular representation learning," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Niklas W. A. Gebauer & Michael Gastegger & Stefaan S. P. Hessmann & Klaus-Robert Müller & Kristof T. Schütt, 2022. "Inverse design of 3d molecular structures with conditional generative neural networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. J. Thorben Frank & Oliver T. Unke & Klaus-Robert Müller & Stefan Chmiela, 2024. "A Euclidean transformer for fast and stable machine learned force fields," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Linus C. Erhard & Jochen Rohrer & Karsten Albe & Volker L. Deringer, 2024. "Modelling atomic and nanoscale structure in the silicon–oxygen system through active machine learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Ang Gao & Richard C. Remsing, 2022. "Self-consistent determination of long-range electrostatics in neural network potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Hanwen Zhang & Veronika Juraskova & Fernanda Duarte, 2024. "Modelling chemical processes in explicit solvents with machine learning potentials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Tian Xie & Arthur France-Lanord & Yanming Wang & Jeffrey Lopez & Michael A. Stolberg & Megan Hill & Graham Michael Leverick & Rafael Gomez-Bombarelli & Jeremiah A. Johnson & Yang Shao-Horn & Jeffrey C, 2022. "Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. O. V. Mythreyi & M. Rohith Srinivaas & Tigga Amit Kumar & R. Jayaganthan, 2021. "Machine-Learning-Based Prediction of Corrosion Behavior in Additively Manufactured Inconel 718," Data, MDPI, vol. 6(8), pages 1-16, July.
    11. Sarmad Dashti Latif & Ali Najah Ahmed, 2023. "A review of deep learning and machine learning techniques for hydrological inflow forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12189-12216, November.
    12. Snehi Shrestha & Kieran James Barvenik & Tianle Chen & Haochen Yang & Yang Li & Meera Muthachi Kesavan & Joshua M. Little & Hayden C. Whitley & Zi Teng & Yaguang Luo & Eleonora Tubaldi & Po-Yen Chen, 2024. "Machine intelligence accelerated design of conductive MXene aerogels with programmable properties," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Xinyu Chen & Shuaihua Lu & Qian Chen & Qionghua Zhou & Jinlan Wang, 2024. "From bulk effective mass to 2D carrier mobility accurate prediction via adversarial transfer learning," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Zhao Fan & Hajime Tanaka, 2024. "Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Peikun Zheng & Roman Zubatyuk & Wei Wu & Olexandr Isayev & Pavlo O. Dral, 2021. "Artificial intelligence-enhanced quantum chemical method with broad applicability," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    16. Gabriele Orlando & Daniele Raimondi & Ramon Duran-Romaña & Yves Moreau & Joost Schymkowitz & Frederic Rousseau, 2022. "PyUUL provides an interface between biological structures and deep learning algorithms," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Gang Wang & Shinya Mine & Duotian Chen & Yuan Jing & Kah Wei Ting & Taichi Yamaguchi & Motoshi Takao & Zen Maeno & Ichigaku Takigawa & Koichi Matsushita & Ken-ichi Shimizu & Takashi Toyao, 2023. "Accelerated discovery of multi-elemental reverse water-gas shift catalysts using extrapolative machine learning approach," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Eric C.-Y. Yuan & Anup Kumar & Xingyi Guan & Eric D. Hermes & Andrew S. Rosen & Judit Zádor & Teresa Head-Gordon & Samuel M. Blau, 2024. "Analytical ab initio hessian from a deep learning potential for transition state optimization," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Bo Lin & Jian Jiang & Xiao Cheng Zeng & Lei Li, 2023. "Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Sukriti Manna & Troy D. Loeffler & Rohit Batra & Suvo Banik & Henry Chan & Bilvin Varughese & Kiran Sasikumar & Michael Sternberg & Tom Peterka & Mathew J. Cherukara & Stephen K. Gray & Bobby G. Sumpt, 2022. "Learning in continuous action space for developing high dimensional potential energy models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31093-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.