IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54698-w.html
   My bibliography  Save this article

Remodelling of Rea1 linker domain drives the removal of assembly factors from pre-ribosomal particles

Author

Listed:
  • Johan Busselez

    (Integrated Structural Biology Department
    Centre National de la Recherche Scientifique
    Institut National de la Santé et de la Recherche Médicale
    Université de Strasbourg)

  • Geraldine Koenig

    (Integrated Structural Biology Department
    Centre National de la Recherche Scientifique
    Institut National de la Santé et de la Recherche Médicale
    Université de Strasbourg)

  • Carine Dominique

    (Université de Toulouse)

  • Torben Klos

    (Integrated Structural Biology Department
    Centre National de la Recherche Scientifique
    Institut National de la Santé et de la Recherche Médicale
    Université de Strasbourg)

  • Deepika Velayudhan

    (Integrated Structural Biology Department
    Centre National de la Recherche Scientifique
    Institut National de la Santé et de la Recherche Médicale
    Université de Strasbourg)

  • Piotr Sosnowski

    (Integrated Structural Biology Department
    Centre National de la Recherche Scientifique
    Institut National de la Santé et de la Recherche Médicale
    Université de Strasbourg)

  • Nils Marechal

    (Integrated Structural Biology Department
    Centre National de la Recherche Scientifique
    Institut National de la Santé et de la Recherche Médicale
    Université de Strasbourg)

  • Corinne Crucifix

    (Integrated Structural Biology Department
    Centre National de la Recherche Scientifique
    Institut National de la Santé et de la Recherche Médicale
    Université de Strasbourg)

  • Hugo Gizardin-Fredon

    (CNRS
    Infrastructure Nationale de Protéomique ProFI – FR2048)

  • Sarah Cianferani

    (CNRS
    Infrastructure Nationale de Protéomique ProFI – FR2048)

  • Benjamin Albert

    (Université de Toulouse)

  • Yves Henry

    (Université de Toulouse)

  • Anthony K. Henras

    (Université de Toulouse)

  • Helgo Schmidt

    (Integrated Structural Biology Department
    Centre National de la Recherche Scientifique
    Institut National de la Santé et de la Recherche Médicale
    Université de Strasbourg)

Abstract

The ribosome maturation factor Rea1 (or Midasin) catalyses the removal of assembly factors from large ribosomal subunit precursors and promotes their export from the nucleus to the cytosol. Rea1 consists of nearly 5000 amino-acid residues and belongs to the AAA+ protein family. It consists of a ring of six AAA+ domains from which the ≈1700 amino-acid residue linker emerges that is subdivided into stem, middle and top domains. A flexible and unstructured D/E rich region connects the linker top to a MIDAS (metal ion dependent adhesion site) domain, which is able to bind the assembly factor substrates. Despite its key importance for ribosome maturation, the mechanism driving assembly factor removal by Rea1 is still poorly understood. Here we demonstrate that the Rea1 linker is essential for assembly factor removal. It rotates and swings towards the AAA+ ring following a complex remodelling scheme involving nucleotide independent as well as nucleotide dependent steps. ATP-hydrolysis is required to engage the linker with the AAA+ ring and ultimately with the AAA+ ring docked MIDAS domain. The interaction between the linker top and the MIDAS domain allows direct force transmission for assembly factor removal.

Suggested Citation

  • Johan Busselez & Geraldine Koenig & Carine Dominique & Torben Klos & Deepika Velayudhan & Piotr Sosnowski & Nils Marechal & Corinne Crucifix & Hugo Gizardin-Fredon & Sarah Cianferani & Benjamin Albert, 2024. "Remodelling of Rea1 linker domain drives the removal of assembly factors from pre-ribosomal particles," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54698-w
    DOI: 10.1038/s41467-024-54698-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54698-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54698-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yasar Luqman Ahmed & Matthias Thoms & Valentin Mitterer & Irmgard Sinning & Ed Hurt, 2019. "Crystal structures of Rea1-MIDAS bound to its ribosome assembly factor ligands resembling integrin–ligand-type complexes," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    2. Helgo Schmidt & Ruta Zalyte & Linas Urnavicius & Andrew P. Carter, 2015. "Structure of human cytoplasmic dynein-2 primed for its power stroke," Nature, Nature, vol. 518(7539), pages 435-438, February.
    3. Nils Marechal & Banyuhay P. Serrano & Xinyan Zhang & Charles J. Weitz, 2022. "Formation of thyroid hormone revealed by a cryo-EM structure of native bovine thyroglobulin," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Yoshitaka Matsuo & Sander Granneman & Matthias Thoms & Rizos-Georgios Manikas & David Tollervey & Ed Hurt, 2014. "Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export," Nature, Nature, vol. 505(7481), pages 112-116, January.
    5. Mariam Jaafar & Julia Contreras & Carine Dominique & Sara Martín-Villanueva & Régine Capeyrou & Patrice Vitali & Olga Rodríguez-Galán & Carmen Velasco & Odile Humbert & Nicholas J. Watkins & Eduardo V, 2021. "Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    6. Stan A. Burgess & Matt L. Walker & Hitoshi Sakakibara & Peter J. Knight & Kazuhiro Oiwa, 2003. "Dynein structure and power stroke," Nature, Nature, vol. 421(6924), pages 715-718, February.
    7. Christoph Leidig & Matthias Thoms & Iris Holdermann & Bettina Bradatsch & Otto Berninghausen & Gert Bange & Irmgard Sinning & Ed Hurt & Roland Beckmann, 2014. "60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle," Nature Communications, Nature, vol. 5(1), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingling Li & Dongxian Jiang & Qiao Zhang & Hui Liu & Fujiang Xu & Chunmei Guo & Zhaoyu Qin & Haixing Wang & Jinwen Feng & Yang Liu & Weijie Chen & Xue Zhang & Lin Bai & Sha Tian & Subei Tan & Chen Xu, 2023. "Integrative proteogenomic characterization of early esophageal cancer," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    2. Gerald Ryan R. Aquino & Philipp Hackert & Nicolai Krogh & Kuan-Ting Pan & Mariam Jaafar & Anthony K. Henras & Henrik Nielsen & Henning Urlaub & Katherine E. Bohnsack & Markus T. Bohnsack, 2021. "The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Ana Martinez-Val & Dorte B. Bekker-Jensen & Sophia Steigerwald & Claire Koenig & Ole Østergaard & Adi Mehta & Trung Tran & Krzysztof Sikorski & Estefanía Torres-Vega & Ewa Kwasniewicz & Sólveig Hlín B, 2021. "Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Kamil Sekulski & Victor Emmanuel Cruz & Christine S. Weirich & Jan P. Erzberger, 2023. "rRNA methylation by Spb1 regulates the GTPase activity of Nog2 during 60S ribosomal subunit assembly," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54698-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.