IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v14y2024i2d10.1038_s41558-023-01903-1.html
   My bibliography  Save this article

Towards an increasingly biased view on Arctic change

Author

Listed:
  • Efrén López-Blanco

    (Aarhus University
    Greenland Institute of Natural Resources)

  • Elmer Topp-Jørgensen

    (Aarhus University)

  • Torben R. Christensen

    (Aarhus University
    Oulu University)

  • Morten Rasch

    (University of Copenhagen)

  • Henrik Skov

    (Aarhus University)

  • Marie F. Arndal

    (Aarhus University)

  • M. Syndonia Bret-Harte

    (University of Alaska Fairbanks)

  • Terry V. Callaghan

    (University of Sheffield
    Tomsk State University (on hold))

  • Niels M. Schmidt

    (Aarhus University)

Abstract

The Russian invasion of Ukraine hampers the ability to adequately describe conditions across the Arctic, thus biasing the view on Arctic change. Here we benchmark the pan-Arctic representativeness of the largest high-latitude research station network, INTERACT, with or without Russian stations. Excluding Russian stations lowers representativeness markedly, with some biases being of the same magnitude as the expected shifts caused by climate change by the end of the century.

Suggested Citation

  • Efrén López-Blanco & Elmer Topp-Jørgensen & Torben R. Christensen & Morten Rasch & Henrik Skov & Marie F. Arndal & M. Syndonia Bret-Harte & Terry V. Callaghan & Niels M. Schmidt, 2024. "Towards an increasingly biased view on Arctic change," Nature Climate Change, Nature, vol. 14(2), pages 152-155, February.
  • Handle: RePEc:nat:natcli:v:14:y:2024:i:2:d:10.1038_s41558-023-01903-1
    DOI: 10.1038/s41558-023-01903-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-023-01903-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-023-01903-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nuno Carvalhais & Matthias Forkel & Myroslava Khomik & Jessica Bellarby & Martin Jung & Mirco Migliavacca & Mingquan Μu & Sassan Saatchi & Maurizio Santoro & Martin Thurner & Ulrich Weber & Bernhard A, 2014. "Global covariation of carbon turnover times with climate in terrestrial ecosystems," Nature, Nature, vol. 514(7521), pages 213-217, October.
    2. Michelle R. McCrystall & Julienne Stroeve & Mark Serreze & Bruce C. Forbes & James A. Screen, 2021. "New climate models reveal faster and larger increases in Arctic precipitation than previously projected," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Jacqueline Oehri & Gabriela Schaepman-Strub & Jin-Soo Kim & Raleigh Grysko & Heather Kropp & Inge Grünberg & Vitalii Zemlianskii & Oliver Sonnentag & Eugénie S. Euskirchen & Merin Reji Chacko & Giovan, 2022. "Vegetation type is an important predictor of the arctic summer land surface energy budget," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    2. Zhenghu Zhou & Chengjie Ren & Chuankuan Wang & Manuel Delgado-Baquerizo & Yiqi Luo & Zhongkui Luo & Zhenggang Du & Biao Zhu & Yuanhe Yang & Shuo Jiao & Fazhu Zhao & Andong Cai & Gaihe Yang & Gehong We, 2024. "Global turnover of soil mineral-associated and particulate organic carbon," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Jacqueline Oehri & Gabriela Schaepman-Strub & Jin-Soo Kim & Raleigh Grysko & Heather Kropp & Inge Grünberg & Vitalii Zemlianskii & Oliver Sonnentag & Eugénie S. Euskirchen & Merin Reji Chacko & Giovan, 2022. "Vegetation type is an important predictor of the arctic summer land surface energy budget," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    5. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    6. Ping, Jiaye & Zhou, Jian & Huang, Kun & Sun, Xiaoying & Sun, Huanfa & Xia, Jianyang, 2021. "Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region," Ecological Modelling, Elsevier, vol. 455(C).
    7. Xiaobo Zhu & Honglin He & Mingguo Ma & Xiaoli Ren & Li Zhang & Fawei Zhang & Yingnian Li & Peili Shi & Shiping Chen & Yanfen Wang & Xiaoping Xin & Yaoming Ma & Yu Zhang & Mingyuan Du & Rong Ge & Na Ze, 2020. "Estimating Ecosystem Respiration in the Grasslands of Northern China Using Machine Learning: Model Evaluation and Comparison," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    8. Wang, Zhaoqi, 2019. "Estimating of terrestrial carbon storage and its internal carbon exchange under equilibrium state," Ecological Modelling, Elsevier, vol. 401(C), pages 94-110.
    9. Karis J. McFarlane & Daniela F. Cusack & Lee H. Dietterich & Alexandra L. Hedgpeth & Kari M. Finstad & Andrew T. Nottingham, 2024. "Experimental warming and drying increase older carbon contributions to soil respiration in lowland tropical forests," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Sihui Tian & Xin Liu & Baocheng Jin & Xuechun Zhao, 2022. "Contribution of Fine Roots to Soil Organic Carbon Accumulation in Different Desert Communities in the Sangong River Basin," IJERPH, MDPI, vol. 19(17), pages 1-16, September.
    11. Piao Zhou & Lin Zhang & Shi Qi, 2022. "Plant Diversity and Aboveground Biomass Interact with Abiotic Factors to Drive Soil Organic Carbon in Beijing Mountainous Areas," Sustainability, MDPI, vol. 14(17), pages 1-12, August.
    12. K. M. Walter Anthony & P. Anthony & N. Hasson & C. Edgar & O. Sivan & E. Eliani-Russak & O. Bergman & B. J. Minsley & S. R. James & N. J. Pastick & A. Kholodov & S. Zimov & E. Euskirchen & M. S. Bret-, 2024. "Upland Yedoma taliks are an unpredicted source of atmospheric methane," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Shawn M. Chartrand & A. Mark Jellinek & Antero Kukko & Anna Grau Galofre & Gordon R. Osinski & Shannon Hibbard, 2023. "High Arctic channel incision modulated by climate change and the emergence of polygonal ground," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Ádám Rieder & Balázs Madarász & Judit Alexandra Szabó & Dóra Zacháry & Anna Vancsik & Marianna Ringer & Zoltán Szalai & Gergely Jakab, 2018. "Soil Organic Matter Alteration Velocity due to Land-Use Change: A Case Study under Conservation Agriculture," Sustainability, MDPI, vol. 10(4), pages 1-11, March.
    15. Rui Qu & Li He & Zhengwei He & Bing Wang & Pengyi Lyu & Jiaxian Wang & Guichuan Kang & Wenqian Bai, 2022. "A Study of Carbon Stock Changes in the Alpine Grassland Ecosystem of Zoigê, China, 2000–2020," Land, MDPI, vol. 11(8), pages 1-15, August.
    16. Hari Prasad Pandey & Tek Narayan Maraseni & Armando Apan & Shreejana Bhusal, 2024. "Achieving SOC Conservation without Land-Use Changes between Agriculture and Forests," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    17. Meiyu Jia & Jintun Zhang & Zhenhui Song & Sehrish Sadia, 2022. "Spatial Pattern and Ecological Process Difference Analyses of the Boundary Habitats of a Treeline Patch: A Case Study from the Li Mountain, North China," Land, MDPI, vol. 11(11), pages 1-18, November.
    18. Daniela Figueroa & Patricia Ortega-Fernández & Thalita F. Abbruzzini & Anaitzi Rivero-Villlar & Francisco Galindo & Bruno Chavez-Vergara & Jorge D. Etchevers & Julio Campo, 2020. "Effects of Land Use Change from Natural Forest to Livestock on Soil C, N and P Dynamics along a Rainfall Gradient in Mexico," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    19. Ekaterina Tarasova & Riccardo Valentini & Giulio Di Lallo & Alexander Cotrina-Sanchez & Maria Vincenza Chiriacò, 2024. "Enhancing Carbon Sequestration: A Systematic Literature Review of Spatial Decision Support Tools," Sustainability, MDPI, vol. 16(12), pages 1-24, June.
    20. Chinn, Sarah M. & Liston, Glen E. & Wilson, Ryan R., 2023. "Assessing past and future climatic influences on the availability of polar bear maternal denning habitat on Wrangel Island," Ecological Modelling, Elsevier, vol. 484(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:14:y:2024:i:2:d:10.1038_s41558-023-01903-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.