IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51422-6.html
   My bibliography  Save this article

Experimental warming and drying increase older carbon contributions to soil respiration in lowland tropical forests

Author

Listed:
  • Karis J. McFarlane

    (Lawrence Livermore National Laboratory)

  • Daniela F. Cusack

    (Colorado State University
    University of California – Los Angeles
    Smithsonian Tropical Research Institute)

  • Lee H. Dietterich

    (Colorado State University
    Haverford College
    U.S. Army Engineer Research and Development Center)

  • Alexandra L. Hedgpeth

    (Lawrence Livermore National Laboratory
    University of California – Los Angeles)

  • Kari M. Finstad

    (Lawrence Livermore National Laboratory)

  • Andrew T. Nottingham

    (Smithsonian Tropical Research Institute
    University of Leeds)

Abstract

Tropical forests account for over 50% of the global terrestrial carbon sink, but climate change threatens to alter the carbon balance of these ecosystems. We show that warming and drying of tropical forest soils may increase soil carbon vulnerability, by increasing degradation of older carbon. In situ whole-profile heating by 4 °C and 50% throughfall exclusion each increased the average radiocarbon age of soil CO2 efflux by ~2–3 years, but the mechanisms underlying this shift differed. Warming accelerated decomposition of older carbon as increased CO2 emissions depleted newer carbon. Drying suppressed decomposition of newer carbon inputs and decreased soil CO2 emissions, thereby increasing contributions of older carbon to CO2 efflux. These findings imply that both warming and drying, by accelerating the loss of older soil carbon or reducing the incorporation of fresh carbon inputs, will exacerbate soil carbon losses and negatively impact carbon storage in tropical forests under climate change.

Suggested Citation

  • Karis J. McFarlane & Daniela F. Cusack & Lee H. Dietterich & Alexandra L. Hedgpeth & Kari M. Finstad & Andrew T. Nottingham, 2024. "Experimental warming and drying increase older carbon contributions to soil respiration in lowland tropical forests," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51422-6
    DOI: 10.1038/s41467-024-51422-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51422-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51422-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nuno Carvalhais & Matthias Forkel & Myroslava Khomik & Jessica Bellarby & Martin Jung & Mirco Migliavacca & Mingquan Μu & Sassan Saatchi & Maurizio Santoro & Martin Thurner & Ulrich Weber & Bernhard A, 2014. "Global covariation of carbon turnover times with climate in terrestrial ecosystems," Nature, Nature, vol. 514(7521), pages 213-217, October.
    2. Andrew T. Nottingham & Patrick Meir & Esther Velasquez & Benjamin L. Turner, 2020. "Author Correction: Soil carbon loss by experimental warming in a tropical forest," Nature, Nature, vol. 586(7831), pages 32-32, October.
    3. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    4. Lenth, Russell V., 2016. "Least-Squares Means: The R Package lsmeans," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i01).
    5. Andrew T. Nottingham & Patrick Meir & Esther Velasquez & Benjamin L. Turner, 2020. "Soil carbon loss by experimental warming in a tropical forest," Nature, Nature, vol. 584(7820), pages 234-237, August.
    6. M. Lupascu & J. M. Welker & U. Seibt & K. Maseyk & X. Xu & C. I. Czimczik, 2014. "High Arctic wetting reduces permafrost carbon feedbacks to climate warming," Nature Climate Change, Nature, vol. 4(1), pages 51-55, January.
    7. Juan P. Boisier & Philippe Ciais & Agnès Ducharne & Matthieu Guimberteau, 2015. "Projected strengthening of Amazonian dry season by constrained climate model simulations," Nature Climate Change, Nature, vol. 5(7), pages 656-660, July.
    8. André Lyra & Pablo Imbach & Daniel Rodriguez & Sin Chan Chou & Selena Georgiou & Lucas Garofolo, 2017. "Projections of climate change impacts on central America tropical rainforest," Climatic Change, Springer, vol. 141(1), pages 93-105, March.
    9. T. W. Crowther & K. E. O. Todd-Brown & C. W. Rowe & W. R. Wieder & J. C. Carey & M. B. Machmuller & B. L. Snoek & S. Fang & G. Zhou & S. D. Allison & J. M. Blair & S. D. Bridgham & A. J. Burton & Y. C, 2016. "Quantifying global soil carbon losses in response to warming," Nature, Nature, vol. 540(7631), pages 104-108, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iain P. Hartley & Tim C. Hill & Sarah E. Chadburn & Gustaf Hugelius, 2021. "Temperature effects on carbon storage are controlled by soil stabilisation capacities," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Shuqi Qin & Dianye Zhang & Bin Wei & Yuanhe Yang, 2024. "Dual roles of microbes in mediating soil carbon dynamics in response to warming," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Ying Chen & Wenkuan Qin & Qiufang Zhang & Xudong Wang & Jiguang Feng & Mengguang Han & Yanhui Hou & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Margaret S. Torn & Biao Zhu, 2024. "Whole-soil warming leads to substantial soil carbon emission in an alpine grassland," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Sean Coogan & Zhixian Sui & David Raubenheimer, 2018. "Gluttony and guilt: monthly trends in internet search query data are comparable with national-level energy intake and dieting behavior," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    6. Claire H Luby & Julie C Dawson & Irwin L Goldman, 2016. "Assessment and Accessibility of Phenotypic and Genotypic Diversity of Carrot (Daucus carota L. var. sativus) Cultivars Commercially Available in the United States," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-19, December.
    7. Muhammad Javed ASIF & Deivaseeno Dorairaj & Ratnam Wickneswari, 2017. "Characterization of natural provenances of Acacia mangium Willd. and Acacia auriculiformis A. Cunn. ex Benth. in Malaysia based on phenotypic traits," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(12), pages 562-576.
    8. Belinda A Wilson & Maldwyn J Evans & William G Batson & Sam C Banks & Iain J Gordon & Donald B Fletcher & Claire Wimpenny & Jenny Newport & Emily Belton & Annette Rypalski & Tim Portas & Adrian D Mann, 2020. "Adapting reintroduction tactics in successive trials increases the likelihood of establishment for an endangered carnivore in a fenced sanctuary," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-17, June.
    9. Piao Zhou & Lin Zhang & Shi Qi, 2022. "Plant Diversity and Aboveground Biomass Interact with Abiotic Factors to Drive Soil Organic Carbon in Beijing Mountainous Areas," Sustainability, MDPI, vol. 14(17), pages 1-12, August.
    10. Sławomir Kujawski & Agnieszka Kujawska & Mariusz Kozakiewicz & Djordje G. Jakovljevic & Błażej Stankiewicz & Julia L. Newton & Kornelia Kędziora-Kornatowska & Paweł Zalewski, 2022. "Effects of Sitting Callisthenic Balance and Resistance Exercise Programs on Cognitive Function in Older Participants," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    11. Charlotte J. Alster & Allycia Laar & Jordan P. Goodrich & Vickery L. Arcus & Julie R. Deslippe & Alexis J. Marshall & Louis A. Schipper, 2023. "Quantifying thermal adaptation of soil microbial respiration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Ayse Ilkay Isik & Edward A Vessel, 2019. "Continuous ratings of movie watching reveal idiosyncratic dynamics of aesthetic enjoyment," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-21, October.
    13. Mingming Wang & Xiaowei Guo & Shuai Zhang & Liujun Xiao & Umakant Mishra & Yuanhe Yang & Biao Zhu & Guocheng Wang & Xiali Mao & Tian Qian & Tong Jiang & Zhou Shi & Zhongkui Luo, 2022. "Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Philip Amoah & Noah Adamtey & Olufunke Cofie, 2017. "Effect of Urine, Poultry Manure, and Dewatered Faecal Sludge on Agronomic Characteristics of Cabbage in Accra, Ghana," Resources, MDPI, vol. 6(2), pages 1-14, May.
    15. Jozef N. Coppelmans & Fieke M. A. Wagemans & Lotte F. Dillen, 2024. "An empirical investigation of emotion and the criminal law: towards a “criminalization bias”?," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.
    16. Jo Dorning & Stephen Harris, 2017. "Dominance, gender, and season influence food patch use in a group-living, solitary foraging canid," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(5), pages 1302-1313.
    17. Ng'ombe, John, 2019. "Economics of the Greenseeder Hand Planter, Discrete Choice Modeling, and On-Farm Field Experimentation," Thesis Commons jckt7, Center for Open Science.
    18. Anna Zimmermann & Julian E. Prieto-Vivas & Charlotte Cautereels & Anton Gorkovskiy & Jan Steensels & Yves Peer & Kevin J. Verstrepen, 2023. "A Cas3-base editing tool for targetable in vivo mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Patrizia Piotti & Juliane Kaminski, 2016. "Do Dogs Provide Information Helpfully?," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-19, August.
    20. Rui Yin & Wenkuan Qin & Xudong Wang & Dong Xie & Hao Wang & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Martin Schädler & Paul Kardol & Nico Eisenhauer & Biao Zhu, 2023. "Experimental warming causes mismatches in alpine plant-microbe-fauna phenology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51422-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.