IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10655-d898783.html
   My bibliography  Save this article

Plant Diversity and Aboveground Biomass Interact with Abiotic Factors to Drive Soil Organic Carbon in Beijing Mountainous Areas

Author

Listed:
  • Piao Zhou

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Lin Zhang

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Shi Qi

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

Abstract

We analyzed and compared the effects of biotic factors (species diversity, structural diversity, and aboveground biomass) and abiotic factors (topography and soil properties) on soil organic carbon in selected mountainous areas of Beijing China. An overall goal is to provide a preliminary scientific basis for biodiversity protection and coordinated development of forest ecosystems and the subsequent carbon balance in this region. Our study ecosystems were coniferous forests, mixed coniferous and broadleaved forests, and broadleaved forests in the western mountainous area of Beijing. We determined both direct and indirect effects of abiotic and biotic factors on soil organic carbon using multiple linear regression and a structural equation model. Results showed that the biotic factors aboveground biomass and structural diversity were the main driving forces of organic carbon accumulation in the soil surface layer (0–10 cm), but species diversity had no significant effect ( p > 0.05). Abiotic factors (altitude, total nitrogen, and total potassium) had some influence on soil surface organic carbon but were subordinate to the biotic factors. The biotic factors had no significant effect on soil organic carbon in the subsurface layers (10–20 cm) and (20–30 cm) ( p > 0.05), whereas the abiotic factors altitude and total nitrogen played a dominant role in subsurface soil organic carbon accumulation of both layers ( p < 0.01). The influences were both direct and indirect influences, but the direct influences played a major role. Our results form an initial reference for afforestation management (Beijing-Tianjin Sandstorm-source Control Project) from the perspective of biodiversity protection and carbon storage enhancement.

Suggested Citation

  • Piao Zhou & Lin Zhang & Shi Qi, 2022. "Plant Diversity and Aboveground Biomass Interact with Abiotic Factors to Drive Soil Organic Carbon in Beijing Mountainous Areas," Sustainability, MDPI, vol. 14(17), pages 1-12, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10655-:d:898783
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nuno Carvalhais & Matthias Forkel & Myroslava Khomik & Jessica Bellarby & Martin Jung & Mirco Migliavacca & Mingquan Μu & Sassan Saatchi & Maurizio Santoro & Martin Thurner & Ulrich Weber & Bernhard A, 2014. "Global covariation of carbon turnover times with climate in terrestrial ecosystems," Nature, Nature, vol. 514(7521), pages 213-217, October.
    2. Marco Keiluweit & Jeremy J. Bougoure & Peter S. Nico & Jennifer Pett-Ridge & Peter K. Weber & Markus Kleber, 2015. "Mineral protection of soil carbon counteracted by root exudates," Nature Climate Change, Nature, vol. 5(6), pages 588-595, June.
    3. Colin Averill & Benjamin L. Turner & Adrien C. Finzi, 2014. "Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage," Nature, Nature, vol. 505(7484), pages 543-545, January.
    4. T. W. Crowther & K. E. O. Todd-Brown & C. W. Rowe & W. R. Wieder & J. C. Carey & M. B. Machmuller & B. L. Snoek & S. Fang & G. Zhou & S. D. Allison & J. M. Blair & S. D. Bridgham & A. J. Burton & Y. C, 2016. "Quantifying global soil carbon losses in response to warming," Nature, Nature, vol. 540(7631), pages 104-108, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongwei Liu & Shanlong Li & Weixing Zhu & Yongyang Wang & Shasha Zhang & Yunting Fang, 2023. "Storage and Stability of Soil Organic Carbon in Two Temperate Forests in Northeastern China," Land, MDPI, vol. 12(5), pages 1-14, May.
    2. Karis J. McFarlane & Daniela F. Cusack & Lee H. Dietterich & Alexandra L. Hedgpeth & Kari M. Finstad & Andrew T. Nottingham, 2024. "Experimental warming and drying increase older carbon contributions to soil respiration in lowland tropical forests," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Guoyong Yan & Chunnan Fan & Junqiang Zheng & Guancheng Liu & Jinghua Yu & Zhongling Guo & Wei Cao & Lihua Wang & Wenjie Wang & Qingfan Meng & Junhui Zhang & Yan Li & Jinping Zheng & Xiaoyang Cui & Xia, 2024. "Forest carbon stocks increase with higher dominance of ectomycorrhizal trees in high latitude forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Iain P. Hartley & Tim C. Hill & Sarah E. Chadburn & Gustaf Hugelius, 2021. "Temperature effects on carbon storage are controlled by soil stabilisation capacities," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    5. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    6. Zhenghu Zhou & Chengjie Ren & Chuankuan Wang & Manuel Delgado-Baquerizo & Yiqi Luo & Zhongkui Luo & Zhenggang Du & Biao Zhu & Yuanhe Yang & Shuo Jiao & Fazhu Zhao & Andong Cai & Gaihe Yang & Gehong We, 2024. "Global turnover of soil mineral-associated and particulate organic carbon," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Lijiang Hu & Ruikun Zeng & Jianwu Yao & Ziwei Liang & Zhaobing Zeng & Wenying Li & Ronghui Wang & Xianjiang Shu & Yong Chen & Jianfeng Ning, 2024. "Characteristics of the Soil Organic Carbon Pool in Paddy Fields in Guangdong Province, South China," Agriculture, MDPI, vol. 14(9), pages 1-13, August.
    8. Chen Ma & Runze Nie & Guoming Du, 2023. "Responses of Soil Collembolans to Land Degradation in a Black Soil Region in China," IJERPH, MDPI, vol. 20(6), pages 1-13, March.
    9. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    10. Quanxu Hu & Jinhe Zhang & Huaju Xue & Jingwei Wang & Aiqing Li, 2024. "Spatiotemporal Variations in Carbon Sources and Sinks in National Park Ecosystem and the Impact of Tourism," Sustainability, MDPI, vol. 16(18), pages 1-23, September.
    11. Qiang Li & Maofang Gao & Zhao-Liang Li, 2022. "Soil Organic Carbon Storage in Australian Wheat Cropping Systems in Response to Climate Change from 1990 to 2060," Land, MDPI, vol. 11(10), pages 1-15, September.
    12. Claudia Melis & Per-Arvid Wold & Anna Maria Billing & Kathrine Bjørgen & Børge Moe, 2020. "Kindergarten Children’s Perception about the Ecological Roles of Living Organisms," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    13. Wang, Chunyu & Li, Sien & Wu, Mousong & Zhang, Wenxin & Guo, Zhenyu & Huang, Siyu & Yang, Danni, 2023. "Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    14. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    15. Ludovic Henneron & Jerôme Balesdent & Gaël Alvarez & Pierre Barré & François Baudin & Isabelle Basile-Doelsch & Lauric Cécillon & Alejandro Fernandez-Martinez & Christine Hatté & Sébastien Fontaine, 2022. "Bioenergetic control of soil carbon dynamics across depth," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Lea Schwengbeck & Lisanne Hölting & Felix Witing, 2023. "Modeling Climate Regulation of Arable Soils in Northern Saxony under the Influence of Climate Change and Management Practices," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    17. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Haowei Ni & Han Hu & Constantin M. Zohner & Weigen Huang & Ji Chen & Yishen Sun & Jixian Ding & Jizhong Zhou & Xiaoyuan Yan & Jiabao Zhang & Yuting Liang & Thomas W. Crowther, 2024. "Effects of winter soil warming on crop biomass carbon loss from organic matter degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Meyer, Rachelle S. & Cullen, Brendan R. & Whetton, Penny H. & Robertson, Fiona A. & Eckard, Richard J., 2018. "Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia," Agricultural Systems, Elsevier, vol. 167(C), pages 34-46.
    20. Ping, Jiaye & Zhou, Jian & Huang, Kun & Sun, Xiaoying & Sun, Huanfa & Xia, Jianyang, 2021. "Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region," Ecological Modelling, Elsevier, vol. 455(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10655-:d:898783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.