IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i4p403-d1591268.html
   My bibliography  Save this article

Nitrogen Availability Level Controlling the Translocation and Stabilization of Maize Residue Nitrogen in Soil Matrix

Author

Listed:
  • Shuzhe Liu

    (College of Geography and Environment, Shandong Normal University, Jinan 250061, China
    Key Laboratory of Conservation Tillage and Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    These authors contributed equally to this work.)

  • Sicong Ma

    (Key Laboratory of Conservation Tillage and Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
    These authors contributed equally to this work.)

  • Fangbo Deng

    (Key Laboratory of Conservation Tillage and Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Feng Zhou

    (Key Laboratory of Conservation Tillage and Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Xiaona Liang

    (Key Laboratory of Conservation Tillage and Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Lei Yuan

    (Key Laboratory of Conservation Tillage and Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Huijie Lü

    (Bayin Guoleng Vocational and Technical College, School of Biotechnology, Korla 841000, China
    Xinjiang Key Laboratory of Sustainable Management of Salinized Land and Regional Agricultural Technology, Korla 841000, China)

  • Xueli Ding

    (School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Hongbo He

    (Key Laboratory of Conservation Tillage and Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Xudong Zhang

    (Key Laboratory of Conservation Tillage and Ecological Agriculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

Abstract

Crop residue returning to field inputs considerable nitrogen (N) into soils, which greatly influences the function and sustainability of the agricultural system. However, little is known about the transformation and physical stabilization of maize residue-derived N in soil matrix in response to changing N availability. To explore the distinct regulation of organo-mineral complexes on maize residue N translocation, a 38-week microcosm incubation was carried out amended with 15 N-labeled maize residue in a Mollisols sampled from Gonghzuling, Northeast of China. Unlabeled inorganic N was added at different levels (0, 60.3 mg N kg −1 soil (low level), 167 mg N kg −1 soil (medium level), and 702 mg N kg −1 soil (high level)). 15 N enrichment in bulk soil and the separated particle size fractions were determined periodically in the bulk soils and the subsamples were analyzed. At the early stage of the incubation, the maize residue N concentration declined significantly in the sand fraction and increased in the silt and clay fractions. Temporally, the 15 N enrichment in the silt fraction changed slightly after 4 weeks but that in the clay fraction increased continuously until the 18th week. These results indicated that the decomposing process controlled maize residue N translocation hierarchically from coarser into finer fractions. From the aspect of functional differentiation, the pass-in of the maize residue N into the silt fraction was apt to be balanced by the pass-out, while the absorption of clay particles was essential for the stabilization of the decomposed maize residue N. The inorganic N level critically controlled both the decomposition and translocation of maize residue in soil. High and medium inorganic N addition facilitated maize residue N decomposition compared to the low-level N addition. Furthermore, medium N availability is more favorable for maize residue N transportation and stabilization in the clay fraction. Comparatively, high-level inorganic N supply could possibly impede the interaction of maize residue N and clay minerals due to the competition of ammonium sorption/fixation on the active site of clay. This research highlighted the functional coupling of organic–inorganic N during soil N accumulation and stabilization, and such findings could present a theoretical perspective on optimal management of crop residue resources and chemical fertilizers in field practices.

Suggested Citation

  • Shuzhe Liu & Sicong Ma & Fangbo Deng & Feng Zhou & Xiaona Liang & Lei Yuan & Huijie Lü & Xueli Ding & Hongbo He & Xudong Zhang, 2025. "Nitrogen Availability Level Controlling the Translocation and Stabilization of Maize Residue Nitrogen in Soil Matrix," Agriculture, MDPI, vol. 15(4), pages 1-15, February.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:4:p:403-:d:1591268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/4/403/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/4/403/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nuno Carvalhais & Matthias Forkel & Myroslava Khomik & Jessica Bellarby & Martin Jung & Mirco Migliavacca & Mingquan Μu & Sassan Saatchi & Maurizio Santoro & Martin Thurner & Ulrich Weber & Bernhard A, 2014. "Global covariation of carbon turnover times with climate in terrestrial ecosystems," Nature, Nature, vol. 514(7521), pages 213-217, October.
    2. S. Hu & F. S. Chapin & M. K. Firestone & C. B. Field & N. R. Chiariello, 2001. "Nitrogen limitation of microbial decomposition in a grassland under elevated CO2," Nature, Nature, vol. 409(6817), pages 188-191, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    2. Zhenghu Zhou & Chengjie Ren & Chuankuan Wang & Manuel Delgado-Baquerizo & Yiqi Luo & Zhongkui Luo & Zhenggang Du & Biao Zhu & Yuanhe Yang & Shuo Jiao & Fazhu Zhao & Andong Cai & Gaihe Yang & Gehong We, 2024. "Global turnover of soil mineral-associated and particulate organic carbon," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    4. Yonghua Li & Song Yao & Hezhou Jiang & Huarong Wang & Qinchuan Ran & Xinyun Gao & Xinyi Ding & Dandong Ge, 2022. "Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China," Land, MDPI, vol. 11(12), pages 1-22, December.
    5. G. Qi & Q. Wang & W. Zhou & H. Ding & X. Wang & L. Qi & Y. Wang & S. Li & L. Dai, 2011. "Moisture effect on carbon and nitrogen mineralization in topsoil of Changbai Mountain, Northeast China," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 57(8), pages 340-348.
    6. Ping, Jiaye & Zhou, Jian & Huang, Kun & Sun, Xiaoying & Sun, Huanfa & Xia, Jianyang, 2021. "Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region," Ecological Modelling, Elsevier, vol. 455(C).
    7. Xiaobo Zhu & Honglin He & Mingguo Ma & Xiaoli Ren & Li Zhang & Fawei Zhang & Yingnian Li & Peili Shi & Shiping Chen & Yanfen Wang & Xiaoping Xin & Yaoming Ma & Yu Zhang & Mingyuan Du & Rong Ge & Na Ze, 2020. "Estimating Ecosystem Respiration in the Grasslands of Northern China Using Machine Learning: Model Evaluation and Comparison," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    8. Meng, Haishan & Yang, Dewei & Zhou, Tian & Zhang, Shuai & Wan, Min & Ji, Yijia & Zhang, Junmei & Yang, Hang & Guo, Ruifang, 2025. "Carbon loss and inequality exacerbated by embodied land redistribution in international trade," Ecological Economics, Elsevier, vol. 228(C).
    9. Wang, Zhaoqi, 2019. "Estimating of terrestrial carbon storage and its internal carbon exchange under equilibrium state," Ecological Modelling, Elsevier, vol. 401(C), pages 94-110.
    10. Jing Wang & Xuesong Wang & Fenli Zheng & Hanmei Wei & Miaomiao Zhao & Jianyu Jiao, 2023. "Ecoenzymatic Stoichiometry Reveals Microbial Carbon and Phosphorus Limitations under Elevated CO 2 , Warming and Drought at Different Winter Wheat Growth Stages," Sustainability, MDPI, vol. 15(11), pages 1-24, June.
    11. Efrén López-Blanco & Elmer Topp-Jørgensen & Torben R. Christensen & Morten Rasch & Henrik Skov & Marie F. Arndal & M. Syndonia Bret-Harte & Terry V. Callaghan & Niels M. Schmidt, 2024. "Towards an increasingly biased view on Arctic change," Nature Climate Change, Nature, vol. 14(2), pages 152-155, February.
    12. Karis J. McFarlane & Daniela F. Cusack & Lee H. Dietterich & Alexandra L. Hedgpeth & Kari M. Finstad & Andrew T. Nottingham, 2024. "Experimental warming and drying increase older carbon contributions to soil respiration in lowland tropical forests," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Sihui Tian & Xin Liu & Baocheng Jin & Xuechun Zhao, 2022. "Contribution of Fine Roots to Soil Organic Carbon Accumulation in Different Desert Communities in the Sangong River Basin," IJERPH, MDPI, vol. 19(17), pages 1-16, September.
    14. Piao Zhou & Lin Zhang & Shi Qi, 2022. "Plant Diversity and Aboveground Biomass Interact with Abiotic Factors to Drive Soil Organic Carbon in Beijing Mountainous Areas," Sustainability, MDPI, vol. 14(17), pages 1-12, August.
    15. Ádám Rieder & Balázs Madarász & Judit Alexandra Szabó & Dóra Zacháry & Anna Vancsik & Marianna Ringer & Zoltán Szalai & Gergely Jakab, 2018. "Soil Organic Matter Alteration Velocity due to Land-Use Change: A Case Study under Conservation Agriculture," Sustainability, MDPI, vol. 10(4), pages 1-11, March.
    16. Rui Qu & Li He & Zhengwei He & Bing Wang & Pengyi Lyu & Jiaxian Wang & Guichuan Kang & Wenqian Bai, 2022. "A Study of Carbon Stock Changes in the Alpine Grassland Ecosystem of Zoigê, China, 2000–2020," Land, MDPI, vol. 11(8), pages 1-15, August.
    17. Hari Prasad Pandey & Tek Narayan Maraseni & Armando Apan & Shreejana Bhusal, 2024. "Achieving SOC Conservation without Land-Use Changes between Agriculture and Forests," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    18. Meiyu Jia & Jintun Zhang & Zhenhui Song & Sehrish Sadia, 2022. "Spatial Pattern and Ecological Process Difference Analyses of the Boundary Habitats of a Treeline Patch: A Case Study from the Li Mountain, North China," Land, MDPI, vol. 11(11), pages 1-18, November.
    19. Daniela Figueroa & Patricia Ortega-Fernández & Thalita F. Abbruzzini & Anaitzi Rivero-Villlar & Francisco Galindo & Bruno Chavez-Vergara & Jorge D. Etchevers & Julio Campo, 2020. "Effects of Land Use Change from Natural Forest to Livestock on Soil C, N and P Dynamics along a Rainfall Gradient in Mexico," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    20. Ekaterina Tarasova & Riccardo Valentini & Giulio Di Lallo & Alexander Cotrina-Sanchez & Maria Vincenza Chiriacò, 2024. "Enhancing Carbon Sequestration: A Systematic Literature Review of Spatial Decision Support Tools," Sustainability, MDPI, vol. 16(12), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:4:p:403-:d:1591268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.