IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v47y2020i5d10.1007_s11116-019-10036-4.html
   My bibliography  Save this article

Modelling the dynamics between tour-based mode choices and tour-timing choices in daily activity scheduling

Author

Listed:
  • Md Sami Hasnine

    (University of Toronto)

  • Khandker Nurul Habib

    (University of Toronto)

Abstract

The paper presents a dynamic discrete–continuous modelling approach to capture individuals’ tour-based mode choices and continuous time expenditure choices tradeoffs in a 24-h time frame. The analysis of traditional activity-based models are typically limited to activity-type, location and time expenditure choices. Besides, mode choice is often simplified to fit in a pre-defined activity schedule. However, decisions of tour departure time, tour mode choice and time expenditure choice for out-of-home activities are intricately inter-related, and common unobserved attributes influence these choices. This paper proposes a random utility maximization based dynamic discrete–continuous model for joint tour based mode and tour timing choices. Tour timing choice is modelled as continuous time allocation/consumption choice under 24-h time-budget. In the case of the tour-based mode choice component, it uses a modelling structure which harnesses the power of dynamic programming and discrete choice. A cross-sectional household travel survey dataset collected in the Greater Toronto and Hamilton Area in 2016 is employed for the empirical investigation in this study. Empirical model shows the capability of handling all possible mode combinations within a tour including ride-hailing services (e.g., Uber, Lyft). Empirical results reveal that individuals variations in time expenditure choice are defined by activity type, employment status, and vehicle ownership. In terms of mode choice, it is clear the emerging transportation service users have different travel pattern than conventional mode users. This modelling framework has the potential to test a wide range of policies.

Suggested Citation

  • Md Sami Hasnine & Khandker Nurul Habib, 2020. "Modelling the dynamics between tour-based mode choices and tour-timing choices in daily activity scheduling," Transportation, Springer, vol. 47(5), pages 2635-2669, October.
  • Handle: RePEc:kap:transp:v:47:y:2020:i:5:d:10.1007_s11116-019-10036-4
    DOI: 10.1007/s11116-019-10036-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-019-10036-4
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-019-10036-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    2. Nurul Habib, Khandker & El-Assi, Wafic & Hasnine, Md. Sami & Lamers, James, 2017. "Daily activity-travel scheduling behaviour of non-workers in the National Capital Region (NCR) of Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 1-16.
    3. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    4. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
    5. Hasnine, Md Sami & Habib, Khandker Nurul, 2018. "What about the dynamics in daily travel mode choices? A dynamic discrete choice approach for tour-based mode choice modelling," Transport Policy, Elsevier, vol. 71(C), pages 70-80.
    6. Bhat, Chandra R. & Sen, Sudeshna, 2006. "Household vehicle type holdings and usage: an application of the multiple discrete-continuous extreme value (MDCEV) model," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 35-53, January.
    7. Swait, Joffre & Adamowicz, Wiktor & Bueren, Martin van, 2004. "Choice and temporal welfare impacts: incorporating history into discrete choice models," Journal of Environmental Economics and Management, Elsevier, vol. 47(1), pages 94-116, January.
    8. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    9. Khandker Habib, 2011. "A random utility maximization (RUM) based dynamic activity scheduling model: Application in weekend activity scheduling," Transportation, Springer, vol. 38(1), pages 123-151, January.
    10. Bhat, Chandra R., 1998. "Analysis of travel mode and departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 361-371, August.
    11. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    12. Hasnine, Md Sami & Lin, TianYang & Weiss, Adam & Habib, Khandker Nurul, 2018. "Determinants of travel mode choices of post-secondary students in a large metropolitan area: The case of the city of Toronto," Journal of Transport Geography, Elsevier, vol. 70(C), pages 161-171.
    13. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    14. repec:hal:journl:peer-00796743 is not listed on IDEAS
    15. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Sen, Sudeshna, 2006. "A joint model for the perfect and imperfect substitute goods case: Application to activity time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 827-850, December.
    16. Erika Spissu & Abdul Pinjari & Chandra Bhat & Ram Pendyala & Kay Axhausen, 2009. "An analysis of weekly out-of-home discretionary activity participation and time-use behavior," Transportation, Springer, vol. 36(5), pages 483-510, September.
    17. Eric Miller & Matthew Roorda & Juan Carrasco, 2005. "A tour-based model of travel mode choice," Transportation, Springer, vol. 32(4), pages 399-422, July.
    18. Chandra Bhat & Konstadinos Goulias & Ram Pendyala & Rajesh Paleti & Raghuprasad Sidharthan & Laura Schmitt & Hsi-Hwa Hu, 2013. "A household-level activity pattern generation model with an application for Southern California," Transportation, Springer, vol. 40(5), pages 1063-1086, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Jia & Yan, Xiang & Bejleri, Ilir & Chen, Changjie, 2022. "Which trip destination matters? Estimating the influence of the built environment on mode choice for home-based complex tours," Journal of Transport Geography, Elsevier, vol. 105(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasnine, Md Sami & Habib, Khandker Nurul, 2018. "What about the dynamics in daily travel mode choices? A dynamic discrete choice approach for tour-based mode choice modelling," Transport Policy, Elsevier, vol. 71(C), pages 70-80.
    2. Calastri, Chiara & Hess, Stephane & Daly, Andrew & Carrasco, Juan Antonio, 2017. "Does the social context help with understanding and predicting the choice of activity type and duration? An application of the Multiple Discrete-Continuous Nested Extreme Value model to activity diary," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 1-20.
    3. Rodrigo J. Tapia & Gerard Jong & Ana M. Larranaga & Helena B. Bettella Cybis, 2021. "Exploring Multiple‐discreteness in Freight Transport. A Multiple Discrete Extreme Value Model Application for Grain Consolidators in Argentina," Networks and Spatial Economics, Springer, vol. 21(3), pages 581-608, September.
    4. Song, Yuchen & Li, Dawei & Liu, Dongjie & Cao, Qi & Chen, Junlan & Ren, Gang & Tang, Xiaoyong, 2022. "Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    5. Paul Ellickson & Sanjog Misra, 2012. "Enriching interactions: Incorporating outcome data into static discrete games," Quantitative Marketing and Economics (QME), Springer, vol. 10(1), pages 1-26, March.
    6. Hu Yingyao & Shum Matthew & Tan Wei & Xiao Ruli, 2017. "A Simple Estimator for Dynamic Models with Serially Correlated Unobservables," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-16, January.
    7. Joao Macieira, 2010. "Oblivious Equilibrium in Dynamic Discrete Games," 2010 Meeting Papers 680, Society for Economic Dynamics.
    8. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, September.
    9. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2017. "Beyond transport time: A review of time use modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 209-230.
    10. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    11. Hanming Fang & Yang Wang, 2015. "Estimating Dynamic Discrete Choice Models With Hyperbolic Discounting, With An Application To Mammography Decisions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 565-596, May.
    12. Hiroyuki Kasahara & Katsumi Shimotsu, 2012. "Sequential Estimation of Structural Models With a Fixed Point Constraint," Econometrica, Econometric Society, vol. 80(5), pages 2303-2319, September.
    13. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
    14. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    15. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2008. "Pseudo-likelihood estimation and bootstrap inference for structural discrete Markov decision models," Journal of Econometrics, Elsevier, vol. 146(1), pages 92-106, September.
    16. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    17. Margaret Aksoy-Pierson & Gad Allon & Awi Federgruen, 2013. "Price Competition Under Mixed Multinomial Logit Demand Functions," Management Science, INFORMS, vol. 59(8), pages 1817-1835, August.
    18. Bhat, Chandra R. & Sen, Sudeshna & Eluru, Naveen, 2009. "The impact of demographics, built environment attributes, vehicle characteristics, and gasoline prices on household vehicle holdings and use," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 1-18, January.
    19. Victor Aguirregabiria & Margaret Slade, 2017. "Empirical models of firms and industries," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1445-1488, December.
    20. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:47:y:2020:i:5:d:10.1007_s11116-019-10036-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.