IDEAS home Printed from https://ideas.repec.org/h/elg/eechap/12679_10.html
   My bibliography  Save this book chapter

Activity-based Travel Demand Analysis

In: A Handbook of Transport Economics

Author

Listed:
  • Abdul Rawoof Pinjari
  • Chandra R. Bhat

Abstract

Bringing together insights and perspectives from close to 70 of the world’s leading experts in the field, this timely Handbook provides an up-to-date guide to the most recent and state-of-the-art advances in transport economics. The comprehensive coverage includes topics such as the relationship between transport and the spatial economy, recent advances in travel demand analysis, the external costs of transport, investment appraisal, pricing, equity issues, competition and regulation, the role of public–private partnerships and the development of policy in local bus services, rail, air and maritime transport.

Suggested Citation

  • Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
  • Handle: RePEc:elg:eechap:12679_10
    as

    Download full text from publisher

    File URL: https://www.elgaronline.com/view/9781847202031.00017.xml
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kay Axhausen & Andrea Zimmermann & Stefan Schönfelder & Guido Rindsfüser & Thomas Haupt, 2002. "Observing the rhythms of daily life: A six-week travel diary," Transportation, Springer, vol. 29(2), pages 95-124, May.
    2. Lee, Ming S. & McNally, Michael G., 2003. "On the structure of weekly activity/travel patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 823-839, December.
    3. Lee, Ming S. & McNally, Michael G., 2003. "On the Structure of Weekly Activity/Travel Patterns," University of California Transportation Center, Working Papers qt15w464vp, University of California Transportation Center.
    4. Rachel Copperman & Chandra Bhat, 2007. "An analysis of the determinants of children’s weekend physical activity participation," Transportation, Springer, vol. 34(1), pages 67-87, January.
    5. Scott, Darren M. & Kanaroglou, Pavlos S., 2002. "An activity-episode generation model that captures interactions between household heads: development and empirical analysis," Transportation Research Part B: Methodological, Elsevier, vol. 36(10), pages 875-896, December.
    6. I. Meloni & L. Guala & A. Loddo, 2004. "Time allocation to discretionary in-home, out-of-home activities and to trips," Transportation, Springer, vol. 31(1), pages 69-96, February.
    7. Bhat, Chandra R. & Guo, Jessica Y., 2007. "A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 506-526, June.
    8. André de Palma & Robin Lindsey & Emile Quinet & Robert Vickerman, 2011. "Handbook Of Transport Economics," PSE-Ecole d'économie de Paris (Postprint) halshs-00754912, HAL.
    9. Giovanni Dosi & Luigi Marengo & Giorgio Fagiolo, 1996. "Learning in evolutionary environment," CEEL Working Papers 9605, Cognitive and Experimental Economics Laboratory, Department of Economics, University of Trento, Italia.
    10. Sivaramakrishnan Srinivasan & Chandra Bhat, 2008. "An exploratory analysis of joint-activity participation characteristics using the American time use survey," Transportation, Springer, vol. 35(3), pages 301-327, May.
    11. Evans, Alan W, 1972. "On the Theory of the Valuation and Allocation of Time," Scottish Journal of Political Economy, Scottish Economic Society, vol. 19(1), pages 1-17, February.
    12. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    13. Erika Spissu & Abdul Pinjari & Chandra Bhat & Ram Pendyala & Kay Axhausen, 2009. "An analysis of weekly out-of-home discretionary activity participation and time-use behavior," Transportation, Springer, vol. 36(5), pages 483-510, September.
    14. Sivaramakrishnan Srinivasan & Chandra Bhat, 2005. "Modeling household interactions in daily in-home and out-of-home maintenance activity participation," Transportation, Springer, vol. 32(5), pages 523-544, September.
    15. Ram Pendyala & Toshiyuki Yamamoto & Ryuichi Kitamura, 2002. "On the formulation of time-space prisms to model constraints on personal activity-travel engagement," Transportation, Springer, vol. 29(1), pages 73-94, February.
    16. Recker, W. W., 2001. "A bridge between travel demand modeling and activity-based travel analysis," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 481-506, June.
    17. Juan Carrasco & Eric Miller, 2006. "Exploring the propensity to perform social activities: a social network approach," Transportation, Springer, vol. 33(5), pages 463-480, September.
    18. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    19. John Gliebe & Frank Koppelman, 2005. "Modeling household activity–travel interactions as parallel constrained choices," Transportation, Springer, vol. 32(5), pages 449-471, September.
    20. Amith Yarlagadda & Sivaramakrishnan Srinivasan, 2008. "Modeling children’s school travel mode and parental escort decisions," Transportation, Springer, vol. 35(2), pages 201-218, March.
    21. Bhat, Chandra R. & Singh, Sujit K., 2000. "A comprehensive daily activity-travel generation model system for workers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(1), pages 1-22, January.
    22. Recker, W. W., 1995. "The household activity pattern problem: General formulation and solution," Transportation Research Part B: Methodological, Elsevier, vol. 29(1), pages 61-77, February.
    23. André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), 2011. "A Handbook of Transport Economics," Books, Edward Elgar Publishing, number 12679.
    24. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Axhausen, Kay W., 2005. "An analysis of multiple interepisode durations using a unifying multivariate hazard model," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 797-823, November.
    25. Moshe Ben-Akiva & John L. Bowman, 1998. "Integration of an Activity-based Model System and a Residential Location Model," Urban Studies, Urban Studies Journal Limited, vol. 35(7), pages 1131-1153, June.
    26. de Graaff, Thomas & Rietveld, Piet, 2007. "Substitution between working at home and out-of-home: The role of ICT and commuting costs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(2), pages 142-160, February.
    27. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    28. Recker, Will W & Duan, J. & Wang, H., 2008. "Development of an estimation procedure for an activity-based travel demand model," University of California Transportation Center, Working Papers qt0rz778v6, University of California Transportation Center.
    29. Antonio Páez & Darren M Scott, 2007. "Social Influence on Travel Behavior: A Simulation Example of the Decision to Telecommute," Environment and Planning A, , vol. 39(3), pages 647-665, March.
    30. Robert Schlich & Kay Axhausen, 2003. "Habitual travel behaviour: Evidence from a six-week travel diary," Transportation, Springer, vol. 30(1), pages 13-36, February.
    31. Ming Lee & Michael McNally, 2006. "An empirical investigation on the dynamic processes of activity scheduling and trip chaining," Transportation, Springer, vol. 33(6), pages 553-565, November.
    32. Sean T. Doherty & Eric J. Miller & Kay W. Axhausen, 2002. "A conceptual model of the weekly household activity/travel scheduling process," Chapters, in: Eliahu Stern & IIan Salomon & Piet H.L. Bovy (ed.), Travel Behaviour, chapter 12, Edward Elgar Publishing.
    33. Davidson, William & Donnelly, Robert & Vovsha, Peter & Freedman, Joel & Ruegg, Steve & Hicks, Jim & Castiglione, Joe & Picado, Rosella, 2007. "Synthesis of first practices and operational research approaches in activity-based travel demand modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 464-488, June.
    34. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    35. Gan, Li Ping & Recker, Will, 2008. "A mathematical programming formulation of the household activity rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 571-606, July.
    36. Ipek Sener & Chandra Bhat, 2007. "An analysis of the social context of children’s weekend discretionary activity participation," Transportation, Springer, vol. 34(6), pages 697-721, November.
    37. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    38. Andrew Harvey & Maria Taylor, 2000. "Activity settings and travel behaviour: A social contact perspective," Transportation, Springer, vol. 27(1), pages 53-73, February.
    39. Mohammadian, Abolfazl & Doherty, Sean T., 2006. "Modeling activity scheduling time horizon: Duration of time between planning and execution of pre-planned activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 475-490, July.
    40. Bhat, Chandra R. & Steed, Jennifer L., 2002. "A continuous-time model of departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 207-224, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paleti, Rajesh & Faghih Imani, Ahmadreza & Eluru, Naveen & Hu, Hsi-Hwa & Huang, Guoxiong, 2017. "An integrated model of intensity of activity opportunities on supply side and tour destination & departure time choices on demand side," Journal of choice modelling, Elsevier, vol. 24(C), pages 63-74.
    2. Ben-Elia, Eran & Benenson, Itzhak, 2019. "A spatially-explicit method for analyzing the equity of transit commuters' accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 31-42.
    3. Liu, Xintao & Yan, Wai Yeung & Chow, Joseph Y.J., 2015. "Time-geographic relationships between vector fields of activity patterns and transport systems," Journal of Transport Geography, Elsevier, vol. 42(C), pages 22-33.
    4. Palma, André de & Lindsey, Robin & Picard, Nathalie, 2015. "Trip-timing decisions and congestion with household scheduling preferences," Economics of Transportation, Elsevier, vol. 4(1), pages 118-131.
    5. Rosales-Salas, Jorge & Jara-Díaz, Sergio R., 2017. "A time allocation model considering external providers," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 175-195.
    6. Franco, Patrizia & Johnston, Ryan & McCormick, Ecaterina, 2020. "Demand responsive transport: Generation of activity patterns from mobile phone network data to support the operation of new mobility services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 244-266.
    7. Rafiq, Rezwana & McNally, Michael G., 2020. "An empirical analysis and policy implications of work tours utilizing public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 237-259.
    8. Deepa, L. & Rawoof Pinjari, Abdul & Krishna Nirmale, Sangram & Srinivasan, Karthik K. & Rambha, Tarun, 2022. "A direct demand model for bus transit ridership in Bengaluru, India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 126-147.
    9. Yasmin, Farhana & Morency, Catherine & Roorda, Matthew J., 2015. "Assessment of spatial transferability of an activity-based model, TASHA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 200-213.
    10. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    11. Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2022. "A systematic review of the agent-based modelling/simulation paradigm in mobility transition," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    12. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
    13. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2017. "Beyond transport time: A review of time use modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 209-230.
    14. He, Brian Y. & Zhou, Jinkai & Ma, Ziyi & Chow, Joseph Y.J. & Ozbay, Kaan, 2020. "Evaluation of city-scale built environment policies in New York City with an emerging-mobility-accessible synthetic population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 444-467.
    15. Liu, Peng & Liao, Feixiong & Huang, Hai-Jun & Timmermans, Harry, 2015. "Dynamic activity-travel assignment in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 656-671.
    16. Xu, Zhiheng & Kang, Jee Eun & Chen, Roger, 2018. "A random utility based estimation framework for the household activity pattern problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 321-337.
    17. Bhat, Chandra R. & Astroza, Sebastian & Bhat, Aarti C. & Nagel, Kai, 2016. "Incorporating a multiple discrete-continuous outcome in the generalized heterogeneous data model: Application to residential self-selection effects analysis in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 52-76.
    18. Li, Xijing & Ma, Xinlin & Wilson, Bev, 2021. "Beyond absolute space: An exploration of relative and relational space in Shanghai using taxi trajectory data," Journal of Transport Geography, Elsevier, vol. 93(C).
    19. Pani, Agnivesh & Sahu, Prasanta K. & Tavasszy, Lóránt & Mishra, Sabya, 2023. "Freight activity-travel pattern generation (FAPG) as an enhancement of freight (trip) generation modelling: Methodology and case study," Transport Policy, Elsevier, vol. 144(C), pages 34-48.
    20. Ballis, Haris & Dimitriou, Loukas, 2020. "Revealing personal activities schedules from synthesizing multi-period origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 224-258.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chow, Joseph Y.J. & Recker, Will W., 2012. "Inverse optimization with endogenous arrival time constraints to calibrate the household activity pattern problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 463-479.
    2. Punyabeet Sarangi & M. Manoj, 2022. "Analysis of activity participation and time use decisions of partners: the context of low-and high-income households," Transportation, Springer, vol. 49(3), pages 1017-1058, June.
    3. Arentze, Theo A. & Ettema, Dick & Timmermans, Harry J.P., 2011. "Estimating a model of dynamic activity generation based on one-day observations: Method and results," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 447-460, February.
    4. Bhat, Chandra R. & Astroza, Sebastian & Bhat, Aarti C. & Nagel, Kai, 2016. "Incorporating a multiple discrete-continuous outcome in the generalized heterogeneous data model: Application to residential self-selection effects analysis in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 52-76.
    5. Pinjari, Abdul Rawoof & Bhat, Chandra R. & Hensher, David A., 2009. "Residential self-selection effects in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 729-748, August.
    6. Ipek Sener & Chandra Bhat, 2012. "Modeling the spatial and temporal dimensions of recreational activity participation with a focus on physical activities," Transportation, Springer, vol. 39(3), pages 627-656, May.
    7. Kang, Jee Eun & Chow, Joseph Y.J. & Recker, Will W., 2013. "On activity-based network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 398-418.
    8. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    9. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    10. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
    11. Lin, Tao & Wang, Donggen, 2015. "Tradeoffs between in- and out-of-residential neighborhood locations for discretionary activities and time use: do social contexts matter?," Journal of Transport Geography, Elsevier, vol. 47(C), pages 119-127.
    12. André de Palma & Nathalie Picard & Robin Lindsey, 2024. "Activity and transportation decisions within households," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 16, pages 426-451, Edward Elgar Publishing.
    13. Chandra Bhat & Konstadinos Goulias & Ram Pendyala & Rajesh Paleti & Raghuprasad Sidharthan & Laura Schmitt & Hsi-Hwa Hu, 2013. "A household-level activity pattern generation model with an application for Southern California," Transportation, Springer, vol. 40(5), pages 1063-1086, September.
    14. Hugo E. Silva & Robin Lindsey & André de Palma & Vincent A. C. van den Berg, 2017. "On the Existence and Uniqueness of Equilibrium in the Bottleneck Model with Atomic Users," Transportation Science, INFORMS, vol. 51(3), pages 863-881, August.
    15. Wu, Guoqiang & Hong, Jinhyun, 2022. "An analysis of the role of residential location on the relationships between time spent online and non-mandatory activity-travel time use over time," Journal of Transport Geography, Elsevier, vol. 102(C).
    16. André de Palma & Mogens Fosgerau, 2011. "Dynamic Traffic Modeling," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 9, Edward Elgar Publishing.
    17. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    18. Pudāne, Baiba, 2019. "Departure Time Choice and Bottleneck Congestion with Automated Vehicles: Role of On-board Activities," MPRA Paper 96328, University Library of Munich, Germany.
    19. Annesha Enam & Karthik C. Konduri & Naveen Eluru & Srinath Ravulaparthy, 2018. "Relationship between well-being and daily time use of elderly: evidence from the disabilities and use of time survey," Transportation, Springer, vol. 45(6), pages 1783-1810, November.
    20. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:elg:eechap:12679_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Darrel McCalla (email available below). General contact details of provider: http://www.e-elgar.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.