IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v167y2022ics1366554522002915.html
   My bibliography  Save this article

Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity

Author

Listed:
  • Song, Yuchen
  • Li, Dawei
  • Liu, Dongjie
  • Cao, Qi
  • Chen, Junlan
  • Ren, Gang
  • Tang, Xiaoyong

Abstract

The major challenges in dynamic activity-based models include predicting activity-related choices and understanding inherent heterogeneous preferences. The dynamic discrete choice model (DDCM) has been used for daily activity-travel planning. However, ignoring unobservable heterogeneity can bias the estimation and prediction results. To solve this problem, we propose a DDCM that accounts for unobserved heterogeneity to capture useful hidden information on travelers’ characteristics. The conditional choice probability estimator and expectation–maximization (EM) algorithm are used in conjunction to estimate the dynamic model. The algorithm iteration depends mainly on the mapping relationship between posterior distributions and conditional choice probabilities. Meanwhile, a less complex log-likelihood function is proposed in the maximization step to estimate two types of parameters simultaneously. The proposed techniques are verified using household travel survey data from Chongqing (China). Two unobserved types of travelers, time and cost sensitivity, are identified based on the Bayesian information criterion (BIC) value. Time- and segment-varying sensitivity analyses are conducted to present choice probability differences of mode and activity scheduling under a one-unit increase in the number of schoolchildren and cars. Different impacts on activity-travel patterns, such as trip frequency, mode share, and activity schedule, generated by changes in auto ownership, are analyzed. Finally, the adjusted rho-squared value, BIC values compared with other single-effect models, and aggregate validation results demonstrate the exceptional performance of the proposed model.

Suggested Citation

  • Song, Yuchen & Li, Dawei & Liu, Dongjie & Cao, Qi & Chen, Junlan & Ren, Gang & Tang, Xiaoyong, 2022. "Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:transe:v:167:y:2022:i:c:s1366554522002915
    DOI: 10.1016/j.tre.2022.102914
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522002915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soora Rasouli & Harry Timmermans, 2014. "Activity-based models of travel demand: promises, progress and prospects," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 18(1), pages 31-60, March.
    2. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    3. Rambha, Tarun & Nozick, Linda K. & Davidson, Rachel, 2021. "Modeling hurricane evacuation behavior using a dynamic discrete choice framework," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 75-100.
    4. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    5. Cirillo, Cinzia & Bastin, Fabian & Hetrakul, Pratt, 2018. "Dynamic discrete choice model for railway ticket cancellation and exchange decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 137-146.
    6. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    7. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    8. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    9. Mai, Tien & Fosgerau, Mogens & Frejinger, Emma, 2015. "A nested recursive logit model for route choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 100-112.
    10. Yusuke Hara & Eiji Hato, 2019. "Analysis of dynamic decision-making in a bicycle-sharing auction using a dynamic discrete choice model," Transportation, Springer, vol. 46(1), pages 147-173, February.
    11. Hasnine, Md Sami & Habib, Khandker Nurul, 2018. "What about the dynamics in daily travel mode choices? A dynamic discrete choice approach for tour-based mode choice modelling," Transport Policy, Elsevier, vol. 71(C), pages 70-80.
    12. Urena Serulle, Nayel & Cirillo, Cinzia, 2017. "The optimal time to evacuate: A behavioral dynamic model on Louisiana resident data," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 447-463.
    13. Cinzia Cirillo & Renting Xu & Fabian Bastin, 2016. "A Dynamic Formulation for Car Ownership Modeling," Transportation Science, INFORMS, vol. 50(1), pages 322-335, February.
    14. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 497-529.
    15. Liu, Yan & Cirillo, Cinzia, 2018. "A generalized dynamic discrete choice model for green vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 288-302.
    16. Bhat, Chandra R., 1996. "A hazard-based duration model of shopping activity with nonparametric baseline specification and nonparametric control for unobserved heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 189-207, June.
    17. Jaap H. Abbring & Øystein Daljord, 2020. "Identifying the discount factor in dynamic discrete choice models," Quantitative Economics, Econometric Society, vol. 11(2), pages 471-501, May.
    18. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    19. Roorda, Matthew J. & Carrasco, Juan A. & Miller, Eric J., 2009. "An integrated model of vehicle transactions, activity scheduling and mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 217-229, February.
    20. Oskar Blom Västberg & Anders Karlström & Daniel Jonsson & Marcus Sundberg, 2020. "A Dynamic Discrete Choice Activity-Based Travel Demand Model," Transportation Science, INFORMS, vol. 54(1), pages 21-41, January.
    21. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
    22. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Rasouli, Soora & Huang, Hai-Jun, 2020. "Tolerance-based column generation for boundedly rational dynamic activity-travel assignment in large-scale networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    23. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
    24. Tien Mai & Fabian Bastin & Emma Frejinger, 2018. "A decomposition method for estimating recursive logit based route choice models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 253-275, September.
    25. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    26. Mai, Tien & Frejinger, Emma & Fosgerau, Mogens & Bastin, Fabian, 2017. "A dynamic programming approach for quickly estimating large network-based MEV models," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 179-197.
    27. Horowitz, Joel L., 1991. "Reconsidering the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 433-438, December.
    28. Ghader, Sepehr & Carrion, Carlos & Tang, Liang & Asadabadi, Arash & Zhang, Lei, 2021. "A copula-based continuous cross-nested logit model for tour scheduling in activity-based travel demand models," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 324-341.
    29. Fosgerau, M. & Bierlaire, M., 2009. "Discrete choice models with multiplicative error terms," Transportation Research Part B: Methodological, Elsevier, vol. 43(5), pages 494-505, June.
    30. Yao, Mingzhu & Wang, Donggen & Yang, Hai, 2017. "A game-theoretic model of car ownership and household time allocation," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 667-685.
    31. Astroza, Sebastian & Bhat, Aarti C., 2016. "On allowing a general form for unobserved heterogeneity in the multiple discrete–continuous probit model: Formulation and application to tourism travelAuthor-Name: Bhat, Chandra R," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 223-249.
    32. Chenfeng Xiong & Xiqun Chen & Xiang He & Wei Guo & Lei Zhang, 2015. "The analysis of dynamic travel mode choice: a heterogeneous hidden Markov approach," Transportation, Springer, vol. 42(6), pages 985-1002, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Pengfang & Zhang, Xiaoqiang & Gao, Dongsheng, 2024. "Preference heterogeneity analysis on train choice behaviour of high-speed railway passengers: A case study in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rambha, Tarun & Nozick, Linda K. & Davidson, Rachel, 2021. "Modeling hurricane evacuation behavior using a dynamic discrete choice framework," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 75-100.
    2. Tran, Hung & Mai, Tien, 2024. "Network-based representations and dynamic discrete choice models for multiple discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    3. Schiraldi, Pasquale & Levy, Matthew R., 2021. "Identification of Dynamic Discrete-Continuous Choice Models, with an Application to Consumption-Savings-Retirement," CEPR Discussion Papers 15719, C.E.P.R. Discussion Papers.
    4. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.
    5. An, Yonghong & Hu, Yingyao & Xiao, Ruli, 2021. "Dynamic decisions under subjective expectations: A structural analysis," Journal of Econometrics, Elsevier, vol. 222(1), pages 645-675.
    6. Hu, Yingyao & Xin, Yi, 2024. "Identification and estimation of dynamic structural models with unobserved choices," Journal of Econometrics, Elsevier, vol. 242(2).
    7. Mai, Tien & Bui, The Viet & Nguyen, Quoc Phong & Le, Tho V., 2023. "Estimation of recursive route choice models with incomplete trip observations," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 313-331.
    8. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    9. Dong, Han & Cirillo, Cinzia, 2020. "Space-time dynamics: A modeling approach for commuting departure time on linked datasets," Journal of Transport Geography, Elsevier, vol. 82(C).
    10. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    11. Hanming Fang & Yang Wang, 2015. "Estimating Dynamic Discrete Choice Models With Hyperbolic Discounting, With An Application To Mammography Decisions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 565-596, May.
    12. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    13. Tien Mai & The Viet Bui & Quoc Phong Nguyen & Tho V. Le, 2022. "Estimation of Recursive Route Choice Models with Incomplete Trip Observations," Papers 2204.12992, arXiv.org.
    14. Arcidiacono, Peter & Miller, Robert A., 2020. "Identifying dynamic discrete choice models off short panels," Journal of Econometrics, Elsevier, vol. 215(2), pages 473-485.
    15. Blom Västberg, Oskar & Karlström, Anders & Jonsson, Daniel & Sundberg, Marcus, 2016. "Including time in a travel demand model using dynamic discrete choice," MPRA Paper 75336, University Library of Munich, Germany, revised 11 Nov 2016.
    16. Sara Amoroso, 2014. "The hidden costs of R&D collaboration," JRC Working Papers on Corporate R&D and Innovation 2014-02, Joint Research Centre.
    17. Li, Haoyang & Zhao, Jinhua, 2018. "What Drives (No) Adoption of New Irrigation Technologies: A Structural Dynamic Estimation Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274474, Agricultural and Applied Economics Association.
    18. Urena Serulle, Nayel & Cirillo, Cinzia, 2017. "The optimal time to evacuate: A behavioral dynamic model on Louisiana resident data," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 447-463.
    19. Myrto Kalouptsidi & Paul T. Scott & Eduardo Souza‐Rodrigues, 2021. "Identification of counterfactuals in dynamic discrete choice models," Quantitative Economics, Econometric Society, vol. 12(2), pages 351-403, May.
    20. Cheng Chou & Geert Ridder & Ruoyao Shi, 2024. "Identification and Estimation of Nonstationary Dynamic Binary Choice Models," Working Papers 202402, University of California at Riverside, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:167:y:2022:i:c:s1366554522002915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.