IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v190y2024ics0965856424003203.html
   My bibliography  Save this article

A dynamic discrete choice modelling approach for forward-looking travel mode choices

Author

Listed:
  • Leong, Joseph
  • Nassir, Neema
  • Mohri, Seyed Sina
  • Sarvi, Majid

Abstract

In this paper, we present a systematic approach based on dynamic discrete choice models (DDCM) to investigate individuals’ forward-looking mode choice behaviours in daily travel tours with multiple destinations. We propose a novel network transformation model that encompasses the entire decision space of all feasible mode combinations for every observed trip/tour in the dataset. By applying the well-established Recursive Logit model structure commonly used in path choice modelling, we address the tour mode choice problem effectively and quantify forward looking considerations in the mode choice process. The proposed model captures the complex considerations individuals take into account when making mode choices. The network transformation incorporates downstream mode limitations into the preceding mode choice options, enabling us to model individuals’ forward-looking behaviour and gain insights into how considerations of future trips such as a shopping in the evening, or school pick-up trip influence previous mode choice decisions earlier in the day. Uncovering and quantifying these hidden forward-looking factors can help modellers better explain the private car usage usually observed for the entire sequences of daily trips, even in presence of competitive alternative modes. The proposed network transformation also enables us to measure the effect of the requirement/preference to return private vehicles (car, motorcycle, and bicycle) home on mode choices in home-bound trips, and subsequently, on the entire daily mode choice decisions. To validate the proposed model, we utilise the VISTA household travel survey data from the Melbourne Metropolitan area in Australia. The model is compared against baseline models, demonstrating its statistical advantages. Additionally, intuitive illustrations using the data showcase the model’s efficacy. From transport planning and policy perspective, tour-based mode choice modelling provides a more comprehensive and precise understanding of travel behaviour by considering the sequence of trips made by an individual. This can help capture the interactions and dependencies between different trips, which trip-based models may overlook. The proposed model is more suitable for analysing the effects of policy interventions like congestion pricing, public transport investments, or new mobility initiatives, as they can better represent the cascading effects of such policies across multiple trips.

Suggested Citation

  • Leong, Joseph & Nassir, Neema & Mohri, Seyed Sina & Sarvi, Majid, 2024. "A dynamic discrete choice modelling approach for forward-looking travel mode choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003203
    DOI: 10.1016/j.tra.2024.104272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424003203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Eui-Jin & Kim, Youngseo & Jang, Sunghoon & Kim, Dong-Kyu, 2021. "Tourists’ preference on the combination of travel modes under Mobility-as-a-Service environment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 236-255.
    2. Nassir, Neema & Hickman, Mark & Ma, Zhen-Liang, 2019. "A strategy-based recursive path choice model for public transit smart card data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 528-548.
    3. Md Sami Hasnine & Khandker Nurul Habib, 2020. "Modelling the dynamics between tour-based mode choices and tour-timing choices in daily activity scheduling," Transportation, Springer, vol. 47(5), pages 2635-2669, October.
    4. Cinzia Cirillo & Renting Xu, 2011. "Dynamic Discrete Choice Models for Transportation," Transport Reviews, Taylor & Francis Journals, vol. 31(4), pages 473-494.
    5. Carlo Giacomo Prato & Katrín Halldórsdóttir & Otto Anker Nielsen, 2017. "Latent lifestyle and mode choice decisions when travelling short distances," Transportation, Springer, vol. 44(6), pages 1343-1363, November.
    6. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    7. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    8. Bibhuti Sharma & Mark Hickman & Neema Nassir, 2019. "Park-and-ride lot choice model using random utility maximization and random regret minimization," Transportation, Springer, vol. 46(1), pages 217-232, February.
    9. Mai, Tien & Fosgerau, Mogens & Frejinger, Emma, 2015. "A nested recursive logit model for route choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 100-112.
    10. Swait, Joffre & Adamowicz, Wiktor & Bueren, Martin van, 2004. "Choice and temporal welfare impacts: incorporating history into discrete choice models," Journal of Environmental Economics and Management, Elsevier, vol. 47(1), pages 94-116, January.
    11. Rajesh Paleti & Peter Vovsha & Gaurav Vyas & Rebekah Anderson & Gregory Giaimo, 2017. "Activity sequencing, location, and formation of individual non-mandatory tours: application to the activity-based models for Columbus, Cincinnati, and Cleveland, OH," Transportation, Springer, vol. 44(3), pages 615-640, May.
    12. Tien Mai & Fabian Bastin & Emma Frejinger, 2018. "A decomposition method for estimating recursive logit based route choice models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 253-275, September.
    13. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.
    14. Abdul Pinjari & Ram Pendyala & Chandra Bhat & Paul Waddell, 2011. "Modeling the choice continuum: an integrated model of residential location, auto ownership, bicycle ownership, and commute tour mode choice decisions," Transportation, Springer, vol. 38(6), pages 933-958, November.
    15. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    16. Milad Mehdizadeh & Alireza Ermagun, 2020. "“I’ll never stop driving my child to school”: on multimodal and monomodal car users," Transportation, Springer, vol. 47(3), pages 1071-1102, June.
    17. Hasnine, Md Sami & Habib, Khandker Nurul, 2018. "What about the dynamics in daily travel mode choices? A dynamic discrete choice approach for tour-based mode choice modelling," Transport Policy, Elsevier, vol. 71(C), pages 70-80.
    18. Meyer de Freitas, Lucas & Becker, Henrik & Zimmermann, Maëlle & Axhausen, Kay W., 2019. "Modelling intermodal travel in Switzerland: A recursive logit approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 200-213.
    19. Schwanen, Tim & Mokhtarian, Patricia L., 2005. "What Affects Commute Mode Choice: Neighborhood Physical Structure or Preferences Toward Neighborhoods?," University of California Transportation Center, Working Papers qt4nq9r1c9, University of California Transportation Center.
    20. Oskar Blom Västberg & Anders Karlström & Daniel Jonsson & Marcus Sundberg, 2020. "A Dynamic Discrete Choice Activity-Based Travel Demand Model," Transportation Science, INFORMS, vol. 54(1), pages 21-41, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yuchen & Li, Dawei & Liu, Dongjie & Cao, Qi & Chen, Junlan & Ren, Gang & Tang, Xiaoyong, 2022. "Modeling activity-travel behavior under a dynamic discrete choice framework with unobserved heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    2. Zhang, Pujun & Lei, Dazhou & Liu, Shan & Jiang, Hai, 2024. "Recursive logit-based meta-inverse reinforcement learning for driver-preferred route planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    3. Yuki Oyama, 2022. "Capturing positive network attributes during the estimation of recursive logit models: A prism-based approach," Papers 2204.01215, arXiv.org, revised Jan 2023.
    4. Cortés, Cristián E. & Donoso, Pedro & Gutiérrez, Leonel & Herl, Daniel & Muñoz, Diego, 2023. "A recursive stochastic transit equilibrium model estimated using passive data from Santiago, Chile," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    5. Mai, Tien & Yu, Xinlian & Gao, Song & Frejinger, Emma, 2021. "Routing policy choice prediction in a stochastic network: Recursive model and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 42-58.
    6. Tien Mai & The Viet Bui & Quoc Phong Nguyen & Tho V. Le, 2022. "Estimation of Recursive Route Choice Models with Incomplete Trip Observations," Papers 2204.12992, arXiv.org.
    7. Meyer de Freitas, Lucas & Becker, Henrik & Zimmermann, Maëlle & Axhausen, Kay W., 2019. "Modelling intermodal travel in Switzerland: A recursive logit approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 200-213.
    8. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.
    9. Siti Raudhatul Fadilah & Hiroaki Nishiuchi & An Minh Ngoc, 2022. "The Impact of Traffic Information Provision and Prevailing Policy on the Route Choice Behavior of Motorcycles Based on the Stated Preference Experiment: A Preliminary Study," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    10. Li, Dawei & Feng, Siqi & Song, Yuchen & Lai, Xinjun & Bekhor, Shlomo, 2023. "Asymmetric closed-form route choice models: Formulations and comparative applications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    11. van Oijen, Tim P. & Daamen, Winnie & Hoogendoorn, Serge P., 2020. "Estimation of a recursive link-based logit model and link flows in a sensor equipped network," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 262-281.
    12. Oyama, Yuki & Hato, Eiji, 2019. "Prism-based path set restriction for solving Markovian traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 528-546.
    13. Mai, Tien & Bui, The Viet & Nguyen, Quoc Phong & Le, Tho V., 2023. "Estimation of recursive route choice models with incomplete trip observations," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 313-331.
    14. Paz, Alexander & Arteaga, Cristian & Cobos, Carlos, 2019. "Specification of mixed logit models assisted by an optimization framework," Journal of choice modelling, Elsevier, vol. 30(C), pages 50-60.
    15. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.
    16. Nassir, Neema & Hickman, Mark & Ma, Zhen-Liang, 2019. "A strategy-based recursive path choice model for public transit smart card data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 528-548.
    17. Masiero, Lorenzo & Hrankai, Richard, 2022. "Modeling tourist accessibility to peripheral attractions," Annals of Tourism Research, Elsevier, vol. 92(C).
    18. Mai, Tien & Bastin, Fabian & Frejinger, Emma, 2017. "On the similarities between random regret minimization and mother logit: The case of recursive route choice models," Journal of choice modelling, Elsevier, vol. 23(C), pages 21-33.
    19. Tran, Hung & Mai, Tien, 2024. "Network-based representations and dynamic discrete choice models for multiple discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    20. Czajkowski, Mikołaj & Zagórska, Katarzyna & Letki, Natalia & Tryjanowski, Piotr & Wąs, Adam, 2021. "Drivers of farmers’ willingness to adopt extensive farming practices in a globally important bird area," Land Use Policy, Elsevier, vol. 107(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.