IDEAS home Printed from https://ideas.repec.org/a/kap/qmktec/v12y2014i1p43-84.html
   My bibliography  Save this article

Bayesian estimation of the random coefficients logit from aggregate count data

Author

Listed:
  • German Zenetti
  • Thomas Otter

Abstract

The random coefficients logit model is a workhorse in marketing and empirical industrial organizations research. When only aggregate data are available, it is customary to calibrate the model based on market shares as data input, even if the data are available in the form of aggregate counts. However, market shares are functionally related to model primitives in the random coefficients model whereas finite aggregate counts are only probabilistic functions of these model primitives. A recent paper by Park and Gupta (Journal of Marketing Research, 46(4), 531–543 2009 ) stresses this distinction but is hamstrung by numerical problems when demonstrating its potential practical importance. We develop Bayesian inference for the likelihood function proposed by Park and Gupta (Journal of Marketing Research, 46(4), 531–543 2009 ), sidestepping the numerical problem encountered by these authors. We show how taking account of the amount of information about shares by modeling counts directly results in improved inference. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • German Zenetti & Thomas Otter, 2014. "Bayesian estimation of the random coefficients logit from aggregate count data," Quantitative Marketing and Economics (QME), Springer, vol. 12(1), pages 43-84, March.
  • Handle: RePEc:kap:qmktec:v:12:y:2014:i:1:p:43-84
    DOI: 10.1007/s11129-013-9140-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11129-013-9140-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11129-013-9140-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cohen, Andrew, 2008. "Package size and price discrimination in the paper towel market," International Journal of Industrial Organization, Elsevier, vol. 26(2), pages 502-516, March.
    2. Sofia Berto Villas-Boas, 2007. "Vertical Relationships between Manufacturers and Retailers: Inference with Limited Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(2), pages 625-652.
    3. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    4. Jean-Pierre H. Dubé & Jeremy T. Fox & Che-Lin Su, 2009. "Improving the Numerical Performance of BLP Static and Dynamic Discrete Choice Random Coefficients Demand Estimation," NBER Working Papers 14991, National Bureau of Economic Research, Inc.
    5. Jiang, Renna & Manchanda, Puneet & Rossi, Peter E., 2009. "Bayesian analysis of random coefficient logit models using aggregate data," Journal of Econometrics, Elsevier, vol. 149(2), pages 136-148, April.
    6. David Hensher, 2001. "The valuation of commuter travel time savings for car drivers: evaluating alternative model specifications," Transportation, Springer, vol. 28(2), pages 101-118, May.
    7. Paulo Albuquerque & Bart J. Bronnenberg, 2012. "Measuring the Impact of Negative Demand Shocks on Car Dealer Networks," Marketing Science, INFORMS, vol. 31(1), pages 4-23, January.
    8. K. Sudhir & Pradeep K. Chintagunta & Vrinda Kadiyali, 2005. "Time-Varying Competition," Marketing Science, INFORMS, vol. 24(1), pages 96-109, September.
    9. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    10. Michelle Sovinsky Goeree, 2008. "Limited Information and Advertising in the U.S. Personal Computer Industry," Econometrica, Econometric Society, vol. 76(5), pages 1017-1074, September.
    11. Andrés Musalem & Eric T. Bradlow & Jagmohan S. Raju, 2009. "Bayesian estimation of random‐coefficients choice models using aggregate data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(3), pages 490-516, April.
    12. Oliver J. Rutz & Michael Trusov, 2011. "Zooming In on Paid Search Ads--A Consumer-Level Model Calibrated on Aggregated Data," Marketing Science, INFORMS, vol. 30(5), pages 789-800, September.
    13. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    14. Peter Lenk & Wayne DeSarbo, 2000. "Bayesian inference for finite mixtures of generalized linear models with random effects," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 93-119, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roozbeh Irani-Kermani & Edward C. Jaenicke & Ardalan Mirshani, 2023. "Accommodating heterogeneity in brand loyalty estimation: application to the U.S. beer retail market," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 820-835, December.
    2. Sharifi, Mehdi & Khazaei Pool, Javad & Jalilvand, Mohammad Reza & Tabaeeian, Reihaneh Alsadat & Ghanbarpour Jooybari, Mohsen, 2019. "Forecasting of advertising effectiveness for renewable energy technologies: A neural network analysis," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 154-161.
    3. Zenetti, German & Klapper, Daniel, 2016. "Advertising Effects Under Consumer Heterogeneity – The Moderating Role of Brand Experience, Advertising Recall and Attitude," Journal of Retailing, Elsevier, vol. 92(3), pages 352-372.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zenetti, German & Klapper, Daniel, 2016. "Advertising Effects Under Consumer Heterogeneity – The Moderating Role of Brand Experience, Advertising Recall and Attitude," Journal of Retailing, Elsevier, vol. 92(3), pages 352-372.
    2. Reynaert, Mathias & Verboven, Frank, 2014. "Improving the performance of random coefficients demand models: The role of optimal instruments," Journal of Econometrics, Elsevier, vol. 179(1), pages 83-98.
    3. Charles Murry & Yiyi Zhou, 2020. "Consumer Search and Automobile Dealer Colocation," Management Science, INFORMS, vol. 66(5), pages 1909-1934, May.
    4. Zenetti, German, 2010. "A Note on 'Bayesian analysis of the random coefficient model using aggregate data', an alternative approach," MPRA Paper 26449, University Library of Munich, Germany.
    5. Stéphane Turolla, 2016. "Spatial Competition in the French Supermarket Industry," Annals of Economics and Statistics, GENES, issue 121-122, pages 213-259.
    6. Andrés Musalem & Marcelo Olivares & Eric T. Bradlow & Christian Terwiesch & Daniel Corsten, 2010. "Structural Estimation of the Effect of Out-of-Stocks," Management Science, INFORMS, vol. 56(7), pages 1180-1197, July.
    7. Sungho Park & Sachin Gupta, 2012. "Comparison of SML and GMM estimators for the random coefficient logit model using aggregate data," Empirical Economics, Springer, vol. 43(3), pages 1353-1372, December.
    8. Yonezawa, Koichi & Richards, Timothy J., 2016. "Competitive Package Size Decisions," Journal of Retailing, Elsevier, vol. 92(4), pages 445-469.
    9. Javier Donna & Andre Trindade & Pedro Pereira & Tiago Pires, 2018. "Measuring the Welfare of Intermediation in Vertical Markets," 2018 Meeting Papers 984, Society for Economic Dynamics.
    10. Sungho Park & Sachin Gupta, 2012. "Handling Endogenous Regressors by Joint Estimation Using Copulas," Marketing Science, INFORMS, vol. 31(4), pages 567-586, July.
    11. Bonnet, Céline, 2007. "Économétrie de la concurrence entre produits différenciés : théorie et méthodes empiriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 83(4), pages 555-580, décembre.
    12. Sanatan Shreay & Hayley H. Chouinard & Jill J. McCluskey, 2016. "Product Differentiation by Package Size," Agribusiness, John Wiley & Sons, Ltd., vol. 32(1), pages 3-15, January.
    13. Donna, Javier D. & Pereira, Pedro & Pires, Tiago & Trindade, Andre, 2018. "Measuring the Welfare of Intermediaries in Vertical Markets," MPRA Paper 90465, University Library of Munich, Germany.
    14. Joachim Freyberger, 2012. "Asymptotic theory for differentiated products demand models with many markets," CeMMAP working papers 19/12, Institute for Fiscal Studies.
    15. Allender, William J. & Richards, Timothy J., 2009. "Measures of Brand Loyalty," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49536, Agricultural and Applied Economics Association.
    16. Donna, Javier D. & Pereira, Pedro & Trindade, Andre & Yoshida, Renan C., 2020. "Direct-to-Consumer Sales by Manufacturers and Bargaining," MPRA Paper 105773, University Library of Munich, Germany.
    17. Allais, Olivier & Etilé, Fabrice & Lecocq, Sébastien, 2015. "Mandatory labels, taxes and market forces: An empirical evaluation of fat policies," Journal of Health Economics, Elsevier, vol. 43(C), pages 27-44.
    18. Nathan H. Miller, 2008. "Competition When Consumers Value Firm Scope," EAG Discussions Papers 200807, Department of Justice, Antitrust Division.
    19. Freyberger, Joachim, 2015. "Asymptotic theory for differentiated products demand models with many markets," Journal of Econometrics, Elsevier, vol. 185(1), pages 162-181.
    20. Ali Hortaçsu & Olivia R. Natan & Hayden Parsley & Timothy Schwieg & Kevin R. Williams, 2021. "Organizational Structure and Pricing: Evidence from a Large U.S. Airline," NBER Working Papers 29508, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Random coefficient multinomial logit; Store-level aggregate data; Bayesian estimation; C11; M3;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • M3 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:12:y:2014:i:1:p:43-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.