IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v30y2011i5p789-800.html
   My bibliography  Save this article

Zooming In on Paid Search Ads--A Consumer-Level Model Calibrated on Aggregated Data

Author

Listed:
  • Oliver J. Rutz

    (Foster School of Business, University of Washington, Seattle, Washington 98195)

  • Michael Trusov

    (Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742)

Abstract

We develop a two-stage consumer-level model of paid search advertising response based on standard aggregated data provided to advertisers by major search engines such as Google or Bing. The proposed model uses behavioral primitives in accord with utility maximization and allows recovering parameters of the heterogeneity distribution in consumer preferences. The model is estimated on a novel paid search data set that includes information on the ad copy. To that end, we develop an original framework to analyze composition and design attributes of paid search ads. Our results allow us to correctly evaluate the effects of specific ad properties on ad performance, taking consumer heterogeneity into account. Another benefit of our approach is allowing recovery of preference correlation across the click-through and conversion stage. Based on the estimated correlation between price- and position-sensitivity, we propose a novel contextual targeting scheme in which a coupon is offered to a consumer depending on the position in which the paid search ad was displayed. Our analysis shows that total revenues from conversion can be increased using this targeting scheme while keeping cost constant.

Suggested Citation

  • Oliver J. Rutz & Michael Trusov, 2011. "Zooming In on Paid Search Ads--A Consumer-Level Model Calibrated on Aggregated Data," Marketing Science, INFORMS, vol. 30(5), pages 789-800, September.
  • Handle: RePEc:inm:ormksc:v:30:y:2011:i:5:p:789-800
    DOI: 10.1287/mksc.1110.0647
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1110.0647
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1110.0647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    2. Sha Yang & Yuxin Chen & Greg Allenby, 2003. "Bayesian Analysis of Simultaneous Demand and Supply," Quantitative Marketing and Economics (QME), Springer, vol. 1(3), pages 251-275, September.
    3. Tülin Erdem & Susumu Imai & Michael Keane, 2003. "Brand and Quantity Choice Dynamics Under Price Uncertainty," Quantitative Marketing and Economics (QME), Springer, vol. 1(1), pages 5-64, March.
    4. Sha Yang & Yuxin Chen & Greg Allenby, 2003. "Reply to Comments on “Bayesian Analysis of Simultaneous Demand and Supply”," Quantitative Marketing and Economics (QME), Springer, vol. 1(3), pages 299-304, September.
    5. Song Yao & Carl F. Mela, 2011. "A Dynamic Model of Sponsored Search Advertising," Marketing Science, INFORMS, vol. 30(3), pages 447-468, 05-06.
    6. Peter Ebbes & Michel Wedel & Ulf Böckenholt & Ton Steerneman, 2005. "Solving and Testing for Regressor-Error (in)Dependence When no Instrumental Variables are Available: With New Evidence for the Effect of Education on Income," Quantitative Marketing and Economics (QME), Springer, vol. 3(4), pages 365-392, December.
    7. Peter J. Danaher & Michael S. Smith, 2011. "Modeling Multivariate Distributions Using Copulas: Applications in Marketing," Marketing Science, INFORMS, vol. 30(1), pages 4-21, 01-02.
    8. Andrés Musalem & Eric T. Bradlow & Jagmohan S. Raju, 2009. "Bayesian estimation of random‐coefficients choice models using aggregate data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(3), pages 490-516, April.
    9. Peter Ebbes & Michel Wedel & Ulf Böckenholt, 2009. "Frugal IV alternatives to identify the parameter for an endogenous regressor," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(3), pages 446-468, April.
    10. Anindya Ghose & Sha Yang, 2009. "An Empirical Analysis of Search Engine Advertising: Sponsored Search in Electronic Markets," Management Science, INFORMS, vol. 55(10), pages 1605-1622, October.
    11. Anindya Ghose & Sha Yang, 2007. "An Empirical Analysis of Search Engine Advertising: Sponsored Search and Cross-Selling in Electronic Markets," Working Papers 07-35, NET Institute, revised Sep 2007.
    12. Sha Yang & Anindya Ghose, 2010. "Analyzing the Relationship Between Organic and Sponsored Search Advertising: Positive, Negative, or Zero Interdependence?," Marketing Science, INFORMS, vol. 29(4), pages 602-623, 07-08.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sungho Park & Sachin Gupta, 2012. "Handling Endogenous Regressors by Joint Estimation Using Copulas," Marketing Science, INFORMS, vol. 31(4), pages 567-586, July.
    2. Sha Yang & Shijie Lu & Xianghua Lu, 2014. "Modeling Competition and Its Impact on Paid-Search Advertising," Marketing Science, INFORMS, vol. 33(1), pages 134-153, January.
    3. Baye, Michael R. & De los Santos, Babur & Wildenbeest, Matthijs R., 2016. "What’s in a name? Measuring prominence and its impact on organic traffic from search engines," Information Economics and Policy, Elsevier, vol. 34(C), pages 44-57.
    4. Avi Goldfarb, 2014. "What is Different About Online Advertising?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(2), pages 115-129, March.
    5. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2014. "Examining the Impact of Ranking on Consumer Behavior and Search Engine Revenue," Management Science, INFORMS, vol. 60(7), pages 1632-1654, July.
    6. Vibhanshu Abhishek & Kartik Hosanagar & Peter S. Fader, 2015. "Aggregation Bias in Sponsored Search Data: The Curse and the Cure," Marketing Science, INFORMS, vol. 34(1), pages 59-77, January.
    7. Kinshuk Jerath & Liye Ma & Young-Hoon Park & Kannan Srinivasan, 2011. "A "Position Paradox" in Sponsored Search Auctions," Marketing Science, INFORMS, vol. 30(4), pages 612-627, July.
    8. Gauzente, Claire & Roy, Yves, 2012. "Message content in keyword campaigns, click behavior, and price-consciousness: A study of millennial consumers," Journal of Retailing and Consumer Services, Elsevier, vol. 19(1), pages 78-87.
    9. Masakazu Ishihara & Andrew T. Ching, 2019. "Dynamic Demand for New and Used Durable Goods Without Physical Depreciation: The Case of Japanese Video Games," Marketing Science, INFORMS, vol. 38(3), pages 392-416, May.
    10. Andrés Musalem & Marcelo Olivares & Eric T. Bradlow & Christian Terwiesch & Daniel Corsten, 2010. "Structural Estimation of the Effect of Out-of-Stocks," Management Science, INFORMS, vol. 56(7), pages 1180-1197, July.
    11. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    12. Oliver J. Rutz & Michael Trusov & Randolph E. Bucklin, 2011. "Modeling Indirect Effects of Paid Search Advertising: Which Keywords Lead to More Future Visits?," Marketing Science, INFORMS, vol. 30(4), pages 646-665, July.
    13. Hans Haans & Néomie Raassens & Roel Hout, 2013. "Search engine advertisements: The impact of advertising statements on click-through and conversion rates," Marketing Letters, Springer, vol. 24(2), pages 151-163, June.
    14. Abou Nabout, Nadia & Skiera, Bernd, 2012. "Return on Quality Improvements in Search Engine Marketing," Journal of Interactive Marketing, Elsevier, vol. 26(3), pages 141-154.
    15. Anindya Ghose & Avi Goldfarb & Sang Pil Han, 2013. "How Is the Mobile Internet Different? Search Costs and Local Activities," Information Systems Research, INFORMS, vol. 24(3), pages 613-631, September.
    16. Navdeep Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.
    17. Liang Guo, 2006. "—Removing the Boundary Between Structural and Reduced-Form Models," Marketing Science, INFORMS, vol. 25(6), pages 629-632, 11-12.
    18. Andrey Simonov & Shawndra Hill, 2021. "Competitive Advertising on Brand Search: Traffic Stealing and Click Quality," Marketing Science, INFORMS, vol. 40(5), pages 923-945, September.
    19. Pradeep Chintagunta & Jean-Pierre Dubé & Khim Yong Goh, 2005. "Beyond the Endogeneity Bias: The Effect of Unmeasured Brand Characteristics on Household-Level Brand Choice Models," Management Science, INFORMS, vol. 51(5), pages 832-849, May.
    20. Philipp Herrmann & Michael Mueller, 2014. "Is it Always Best to be on Top? The Effect of Ad Positioning on Key Performance Indicators in Search Engine Advertising," Working Papers Dissertations 09, Paderborn University, Faculty of Business Administration and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:30:y:2011:i:5:p:789-800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.