IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/19-12.html
   My bibliography  Save this paper

Asymptotic theory for differentiated products demand models with many markets

Author

Listed:
  • Joachim Freyberger

Abstract

This paper develops asymptotic theory for estimated parameters in differentiated product demand systems with a fixed number of products, as the number of markets T increases, taking into account that the market shares are approximated by Monte Carlo integration. It is shown that the estimated parameters are √T consistent and asymptotically normal as long as the number of simulations R grows fast enough relative to T. Monte Carlo integration induces both additional variance as well additional bias terms in the asymptotic expansion of the estimator. If R does not increase as fast as T, the leading bias term dominates the leading variance term and the asymptotic distribution might not be centered at 0. This paper suggests methods to eliminate the leading bias term from the asymptotic expansion. Furthermore, an adjustment to the asymptotic variance is proposed that takes the leading variance term into account. Monte Carlo results show that these adjustments, which are easy to compute, should be used in applications to avoid severe undercoverage caused by the simulation error.

Suggested Citation

  • Joachim Freyberger, 2012. "Asymptotic theory for differentiated products demand models with many markets," CeMMAP working papers 19/12, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:19/12
    DOI: 10.1920/wp.cem.2012.1912
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP1912.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2012.1912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steve Berry & Oliver B. Linton & Ariel Pakes, 2004. "Limit Theorems for Estimating the Parameters of Differentiated Product Demand Systems," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 613-654.
    2. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    3. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    4. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82, pages 1749-1797, September.
    5. Lee, Lung-Fei, 1995. "Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 437-483, June.
    6. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    7. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    8. Sofia Berto Villas-Boas, 2007. "Vertical Relationships between Manufacturers and Retailers: Inference with Limited Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(2), pages 625-652.
    9. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    10. Kim, Donghun, 2004. "Estimation of the Effects of New Brands on Incumbents' Profits and Consumer Welfare: The U.S. Processed Cheese Market Case," Research Reports 25192, University of Connecticut, Food Marketing Policy Center.
    11. Amit Gandhi & Kyoo il Kim & Amil Petrin, 2011. "Identification and Estimation in Discrete Choice Demand Models when Endogenous Variables Interact with the Error," NBER Working Papers 16894, National Bureau of Economic Research, Inc.
    12. Kenneth L. Judd & Ben Skrainka, 2011. "High performance quadrature rules: how numerical integration affects a popular model of product differentiation," CeMMAP working papers CWP03/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Jean-Pierre H. Dubé & Jeremy T. Fox & Che-Lin Su, 2009. "Improving the Numerical Performance of BLP Static and Dynamic Discrete Choice Random Coefficients Demand Estimation," NBER Working Papers 14991, National Bureau of Economic Research, Inc.
    14. Charles J. Romeo, 2010. "Filling Out the Instrument Set in Mixed Logit Demand Systems for Aggregate Data," EAG Discussions Papers 201003, Department of Justice, Antitrust Division.
    15. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    16. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    17. Donghun Kim, 2004. "Estimation of the Effects of New Brands on Incumbents’ Profits and Consumer Welfare: The U.S. Processed Cheese Market Case," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 25(3), pages 275-293, September.
    18. Dennis Kristensen & Bernard Salanié, 2010. "Higher Order Improvements for Approximate Estimators," CAM Working Papers 2010-04, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    19. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    20. Donghun Kim, 2004. "Estimation of the Effects of New Brands on Incumbents' Profits and Consumer Welfare: The U.S. Processed Cheese Market Case," Food Marketing Policy Center Research Reports 079, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Freyberger, Joachim, 2015. "Asymptotic theory for differentiated products demand models with many markets," Journal of Econometrics, Elsevier, vol. 185(1), pages 162-181.
    2. Joachim Freyberger, 2012. "Asymptotic theory for differentiated products demand models with many markets," CeMMAP working papers CWP19/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    4. Ketz, Philipp, 2019. "On asymptotic size distortions in the random coefficients logit model," Journal of Econometrics, Elsevier, vol. 212(2), pages 413-432.
    5. Tiboldo, G. & Castellari, E. & Moro, D., 2024. "The distributional implications of health taxes: A case study on the Italian sugar tax," Food Policy, Elsevier, vol. 126(C).
    6. Moon, Hyungsik Roger & Shum, Matthew & Weidner, Martin, 2018. "Estimation of random coefficients logit demand models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 613-644.
    7. Lacaze, María Victoria & González, Julia, 2018. "New goods with new attributes: combining revealed and stated preferences to assess the effect of a novel quality label in the food industry," Nülan. Deposited Documents 2976, Universidad Nacional de Mar del Plata, Facultad de Ciencias Económicas y Sociales, Centro de Documentación.
    8. Elena Lopez & Rigoberto A. Lopez, 2009. "Demand for differentiated milk products: implications for price competition," Agribusiness, John Wiley & Sons, Ltd., vol. 25(4), pages 453-465.
    9. Kristensen, Dennis & Salanié, Bernard, 2017. "Higher-order properties of approximate estimators," Journal of Econometrics, Elsevier, vol. 198(2), pages 189-208.
    10. Iaria, Alessandro & ,, 2020. "Identification and Estimation of Demand for Bundles," CEPR Discussion Papers 14363, C.E.P.R. Discussion Papers.
    11. Allais, Olivier & Etilé, Fabrice & Lecocq, Sébastien, 2015. "Mandatory labels, taxes and market forces: An empirical evaluation of fat policies," Journal of Health Economics, Elsevier, vol. 43(C), pages 27-44.
    12. Lapo Filistrucchi & Tobias J. Klein, 2013. "Price Competition in Two-Sided Markets with Heterogeneous Consumers and Network Effects," Working Papers 13-20, NET Institute.
    13. Pierre Dubois & Rachel Griffith & Martin O'Connell, 2020. "How Well Targeted Are Soda Taxes?," American Economic Review, American Economic Association, vol. 110(11), pages 3661-3704, November.
    14. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    15. He, Wentao & Hao, Xiaoli, 2023. "Competition and welfare effects of introducing new products into the new energy vehicle market: Empirical evidence from Tesla’s entry into the Chinese market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    16. Susan Athey & Guido W. Imbens, 2007. "Discrete Choice Models With Multiple Unobserved Choice Characteristics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1159-1192, November.
    17. Hyungsik Roger Moon & Matthew Shum & Martin Weidner, 2017. "Estimation of random coefficients logit demand models with interactive fixed effects," CeMMAP working papers 12/17, Institute for Fiscal Studies.
    18. Laura Grigolon, 2021. "Blurred boundaries: A flexible approach for segmentation applied to the car market," Quantitative Economics, Econometric Society, vol. 12(4), pages 1273-1305, November.
    19. Satoshi Myojo & Yuichiro Kanazawa, 2010. "On Asymptotic Properties of the Parameters of Differentiated Product Demand and Supply Systems When Demographically-Categorized Purchasing Pattern Data are Available," Discussion Papers 1009, Graduate School of Economics, Kobe University.
    20. Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," NBER Working Papers 15276, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:19/12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.