IDEAS home Printed from https://ideas.repec.org/a/kap/netnom/v16y2015i3p169-191.html
   My bibliography  Save this article

Chance and service level constraints for stochastic generation expansion planning

Author

Listed:
  • Geun-Cheol Lee
  • Martin Höhenrieder
  • Jean-Paul Watson
  • David Woodruff

Abstract

We consider the problem of generation expansion planning (GEP) under uncertainty. Existing and planned deployment of demand response mechanisms necessitates extensions of GEP optimization models to minimize planned investment portfolio cost. We propose a combination of service level threshold and chance constraints to abstractly capture the impact of demand response mechanisms in generation expansion planning. We examine the computational properties of solutions from the proposed optimization model using real-world data from South Korea. Our results indicate that the proposed models can be solved to optimality in tractable run-times, allowing for their use in decision support contexts and avoiding the need for heuristic solution procedures. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Geun-Cheol Lee & Martin Höhenrieder & Jean-Paul Watson & David Woodruff, 2015. "Chance and service level constraints for stochastic generation expansion planning," Netnomics, Springer, vol. 16(3), pages 169-191, December.
  • Handle: RePEc:kap:netnom:v:16:y:2015:i:3:p:169-191
    DOI: 10.1007/s11066-015-9100-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11066-015-9100-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11066-015-9100-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    2. Gitizadeh, Mohsen & Kaji, Mahdi & Aghaei, Jamshid, 2013. "Risk based multiobjective generation expansion planning considering renewable energy sources," Energy, Elsevier, vol. 50(C), pages 74-82.
    3. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    4. Hemmati, Reza & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin, 2016. "Coordinated generation and transmission expansion planning in deregulated electricity market considering wind farms," Renewable Energy, Elsevier, vol. 85(C), pages 620-630.
    5. Shabbir Ahmed & Nikolaos V. Sahinidis, 2003. "An Approximation Scheme for Stochastic Integer Programs Arising in Capacity Expansion," Operations Research, INFORMS, vol. 51(3), pages 461-471, June.
    6. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    7. Wedad Elmaghraby & Shmuel S. Oren, 1999. "The Efficiency of Multi-Unit Electricity Auctions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 89-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afful-Dadzie, Anthony & Afful-Dadzie, Eric & Awudu, Iddrisu & Banuro, Joseph Kwaku, 2017. "Power generation capacity planning under budget constraint in developing countries," Applied Energy, Elsevier, vol. 188(C), pages 71-82.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torres-Rincón, Samuel & Sánchez-Silva, Mauricio & Bastidas-Arteaga, Emilio, 2021. "A multistage stochastic program for the design and management of flexible infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    3. Trine K. Boomsma, 2019. "Comments on: A comparative study of time aggregation techniques in relation to power capacity-expansion modeling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 406-409, October.
    4. Gaivoronski, Alexei & Sechi, Giovanni M. & Zuddas, Paola, 2012. "Cost/risk balanced management of scarce resources using stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 214-224.
    5. Levent Eriskin & Mumtaz Karatas, 2024. "Applying robust optimization to the shelter location–allocation problem: a case study for Istanbul," Annals of Operations Research, Springer, vol. 339(3), pages 1589-1635, August.
    6. Davari-Ardakani, Hamed & Aminnayeri, Majid & Seifi, Abbas, 2014. "A study on modeling the dynamics of statistically dependent returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 35-51.
    7. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    8. Manuel Laguna, 1998. "Applying Robust Optimization to Capacity Expansion of One Location in Telecommunications with Demand Uncertainty," Management Science, INFORMS, vol. 44(11-Part-2), pages 101-110, November.
    9. Giovanni Pantuso & Trine K. Boomsma, 2020. "On the number of stages in multistage stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 581-603, September.
    10. Huang, Edward & Goetschalckx, Marc, 2014. "Strategic robust supply chain design based on the Pareto-optimal tradeoff between efficiency and risk," European Journal of Operational Research, Elsevier, vol. 237(2), pages 508-518.
    11. Anthony Papavasiliou & Shmuel S. Oren, 2013. "Multiarea Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network," Operations Research, INFORMS, vol. 61(3), pages 578-592, June.
    12. S C H Leung & K K Lai & W-L Ng & Y Wu, 2007. "A robust optimization model for production planning of perishable products," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 413-422, April.
    13. Huang, Edward & Liu, Irene & Lin, James T., 2018. "Robust model for the assignment of outgoing flights on airport baggage unloading areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 110-125.
    14. Boris Defourny & Damien Ernst & Louis Wehenkel, 2013. "Scenario Trees and Policy Selection for Multistage Stochastic Programming Using Machine Learning," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 488-501, August.
    15. Jikai Zou & Shabbir Ahmed & Xu Andy Sun, 2018. "Partially Adaptive Stochastic Optimization for Electric Power Generation Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 388-401, May.
    16. Wei Zhang & Kai Wang & Alexandre Jacquillat & Shuaian Wang, 2023. "Optimized Scenario Reduction: Solving Large-Scale Stochastic Programs with Quality Guarantees," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 886-908, July.
    17. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.
    18. Li, Yuanzhe, 2019. "Modeling Bioenergy Supply Chains: Feedstocks Pretreatment, Integrated System Design Under Uncertainty," Institute of Transportation Studies, Working Paper Series qt1539g5sj, Institute of Transportation Studies, UC Davis.
    19. Julian Englberger & Frank Herrmann & Michael Manitz, 2016. "Two-stage stochastic master production scheduling under demand uncertainty in a rolling planning environment," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6192-6215, October.
    20. Fitiwi, Desta & Lynch, Muireann Á. & Bertsch, Valentin, 2019. "Optimal development of electricity generation mix considering fossil fuel phase-out and strategic multi-area interconnection," Papers WP616, Economic and Social Research Institute (ESRI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netnom:v:16:y:2015:i:3:p:169-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.