IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v50y2013icp74-82.html
   My bibliography  Save this article

Risk based multiobjective generation expansion planning considering renewable energy sources

Author

Listed:
  • Gitizadeh, Mohsen
  • Kaji, Mahdi
  • Aghaei, Jamshid

Abstract

Generation expansion planning is defined as the problem of finding the technology type, number of generation units, size, and location of candidate plants within the planning horizon. In the deregulated environment rather than the traditional system which considered the cost minimization as the main objective function in generation expansion planning problem, the major objective is to maximize the Project Lifetime Economic Return. In this paper, the problem is solved considering three objectives, simultaneously (i.e. maximization of the Project Lifetime Economic Return, minimization of CO2 emission, and minimization of the fuel price risk due to the use of non-renewable energy sources). Furthermore, due to the extensive use of renewable energy sources, e.g., onshore wind, offshore wind, solar, etc, the effect of these power plants has been investigated in this paper. In order to make the problem more compatible with the real world, some of the most common incentive systems (i.e. carbon tax, emission trade, quota obligation, and feed-in-tariff) have been considered for the problem formulation. The problem is solved using Modified Normal Boundary Intersection method using General Algebraic Modelling System. Finally, a case study is designed to assess the efficiency of the proposed scheme.

Suggested Citation

  • Gitizadeh, Mohsen & Kaji, Mahdi & Aghaei, Jamshid, 2013. "Risk based multiobjective generation expansion planning considering renewable energy sources," Energy, Elsevier, vol. 50(C), pages 74-82.
  • Handle: RePEc:eee:energy:v:50:y:2013:i:c:p:74-82
    DOI: 10.1016/j.energy.2012.11.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212009012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.11.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Massé & R. Gibrat, 1957. "Application of Linear Programming to Investments in the Electric Power Industry," Management Science, INFORMS, vol. 3(2), pages 149-166, January.
    2. Pereira, Adelino J.C. & Saraiva, João Tomé, 2011. "Generation expansion planning (GEP) – A long-term approach using system dynamics and genetic algorithms (GAs)," Energy, Elsevier, vol. 36(8), pages 5180-5199.
    3. Shrestha, Ram M. & O.P. Marpaung, Charles, 2002. "Supply- and demand-side effects of power sector planning with CO2 mitigation constraints in a developing country," Energy, Elsevier, vol. 27(3), pages 271-286.
    4. Nakawiro, Thanawat & Bhattacharyya, Subhes C. & Limmeechokchai, Bundit, 2008. "Electricity capacity expansion in Thailand: An analysis of gas dependence and fuel import reliance," Energy, Elsevier, vol. 33(5), pages 712-723.
    5. Antunes, C.Henggeler & Martins, A.Gomes & Brito, Isabel Sofia, 2004. "A multiple objective mixed integer linear programming model for power generation expansion planning," Energy, Elsevier, vol. 29(4), pages 613-627.
    6. Nelson, James & Johnston, Josiah & Mileva, Ana & Fripp, Matthias & Hoffman, Ian & Petros-Good, Autumn & Blanco, Christian & Kammen, Daniel M., 2012. "High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures," Energy Policy, Elsevier, vol. 43(C), pages 436-447.
    7. AlKhal, Farqad & Chedid, Riad & Itani, Zeina & Karam, Tony, 2006. "An assessment of the potential benefits from integrated electricity capacity planning in the northern Middle East region," Energy, Elsevier, vol. 31(13), pages 2316-2324.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koltsaklis, Nikolaos E. & Liu, Pei & Georgiadis, Michael C., 2015. "An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response," Energy, Elsevier, vol. 82(C), pages 865-888.
    2. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    3. James H. Merrick & John E. T. Bistline & Geoffrey J. Blanford, 2021. "On representation of energy storage in electricity planning models," Papers 2105.03707, arXiv.org, revised May 2021.
    4. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2019. "A multi-objective framework for long-term generation expansion planning with variable renewables," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Seddighi, Amir Hossein & Ahmadi-Javid, Amir, 2015. "Integrated multiperiod power generation and transmission expansion planning with sustainability aspects in a stochastic environment," Energy, Elsevier, vol. 86(C), pages 9-18.
    6. Henning, Dag & Trygg, Louise, 2008. "Reduction of electricity use in Swedish industry and its impact on national power supply and European CO2 emissions," Energy Policy, Elsevier, vol. 36(7), pages 2330-2350, July.
    7. Pereira, Adelino J.C. & Saraiva, João Tomé, 2013. "Long term impact of wind power generation in the Iberian day-ahead electricity market price," Energy, Elsevier, vol. 55(C), pages 1159-1171.
    8. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    9. Nir Becker & David Soloveitchik & Moshe Olshansky, 2012. "A Weighted Average Incorporation of Pollution Costs into the Electrical Expansion Planning," Energy & Environment, , vol. 23(1), pages 1-15, January.
    10. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    11. Caunhye, Aakil M. & Cardin, Michel-Alexandre, 2018. "Towards more resilient integrated power grid capacity expansion: A robust optimization approach with operational flexibility," Energy Economics, Elsevier, vol. 72(C), pages 20-34.
    12. Al-Mansour, Fouad & Sucic, Boris & Pusnik, Matevz, 2014. "Challenges and prospects of electricity production from renewable energy sources in Slovenia," Energy, Elsevier, vol. 77(C), pages 73-81.
    13. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    14. Kat, Bora, 2023. "Clean energy transition in the Turkish power sector: A techno-economic analysis with a high-resolution power expansion model," Utilities Policy, Elsevier, vol. 82(C).
    15. Pineau, Pierre-Olivier & Rasata, Hasina & Zaccour, Georges, 2011. "Impact of some parameters on investments in oligopolistic electricity markets," European Journal of Operational Research, Elsevier, vol. 213(1), pages 180-195, August.
    16. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    17. Koopmans, Tjalling C, 1977. "Concepts of Optimality and Their Uses," American Economic Review, American Economic Association, vol. 67(3), pages 261-274, June.
    18. Frew, Bethany A. & Becker, Sarah & Dvorak, Michael J. & Andresen, Gorm B. & Jacobson, Mark Z., 2016. "Flexibility mechanisms and pathways to a highly renewable US electricity future," Energy, Elsevier, vol. 101(C), pages 65-78.
    19. Munoz, Francisco D. & Pumarino, Bruno J. & Salas, Ignacio A., 2017. "Aiming low and achieving it: A long-term analysis of a renewable policy in Chile," Energy Economics, Elsevier, vol. 65(C), pages 304-314.
    20. Hyun, Minwoo & Kim, Yeong Jae & Eom, Jiyong, 2020. "Assessing the impact of a demand-resource bidding market on an electricity generation portfolio and the environment," Energy Policy, Elsevier, vol. 147(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:50:y:2013:i:c:p:74-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.