IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i20p6192-6215.html
   My bibliography  Save this article

Two-stage stochastic master production scheduling under demand uncertainty in a rolling planning environment

Author

Listed:
  • Julian Englberger
  • Frank Herrmann
  • Michael Manitz

Abstract

This paper proposes a scenario-based two-stage stochastic programming model with recourse for master production scheduling under demand uncertainty. We integrate the model into a hierarchical production planning and control system that is common in industrial practice. To reduce the problem of the disaggregation of the master production schedule, we use a relatively low aggregation level (compared to other work on stochastic programming for production planning). Consequently, we must consider many more scenarios to model demand uncertainty. Additionally, we modify standard modelling approaches for stochastic programming because they lead to the occurrence of many infeasible problems due to rolling planning horizons and interdependencies between master production scheduling and successive planning levels. To evaluate the performance of the proposed models, we generate a customer order arrival process, execute production planning in a rolling horizon environment and simulate the realisation of the planning results. In our experiments, the tardiness of customer orders can be nearly eliminated by the use of the proposed stochastic programming model at the cost of increasing inventory levels and using additional capacity.

Suggested Citation

  • Julian Englberger & Frank Herrmann & Michael Manitz, 2016. "Two-stage stochastic master production scheduling under demand uncertainty in a rolling planning environment," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6192-6215, October.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:20:p:6192-6215
    DOI: 10.1080/00207543.2016.1162917
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1162917
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1162917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James H. Bookbinder & Jin-Yan Tan, 1988. "Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints," Management Science, INFORMS, vol. 34(9), pages 1096-1108, September.
    2. Helber, Stefan & Sahling, Florian & Schimmelpfeng, Katja, 2011. "Dynamic capacitated lot sizing with random demand and dynamic safety stocks," Hannover Economic Papers (HEP) dp-465, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    5. Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
    6. Mula, J. & Poler, R. & Garcia-Sabater, J.P. & Lario, F.C., 2006. "Models for production planning under uncertainty: A review," International Journal of Production Economics, Elsevier, vol. 103(1), pages 271-285, September.
    7. Mirzapour Al-e-hashem, S.M.J. & Malekly, H. & Aryanezhad, M.B., 2011. "A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty," International Journal of Production Economics, Elsevier, vol. 134(1), pages 28-42, November.
    8. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    9. Song, Wheyming Tina, 1996. "On the estimation of optimal batch sizes in the analysis of simulation output," European Journal of Operational Research, Elsevier, vol. 88(2), pages 304-319, January.
    10. Byrne, M. D. & Bakir, M. A., 1999. "Production planning using a hybrid simulation - analytical approach," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 305-311, March.
    11. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Yang & Lei Xiong & Yanfeng Li & Qian Chen & Yijing Yu & Jingyang Wang, 2022. "Contract Coordination of Fresh Agri-Product Supply Chain under O2O Model," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    2. Qinyun Li & Stephen M. Disney, 2017. "Revisiting rescheduling: MRP nervousness and the bullwhip effect," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1992-2012, April.
    3. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    4. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    5. Aura Jalal & Aldair Alvarez & Cesar Alvarez-Cruz & Jonathan La Vega & Alfredo Moreno, 2023. "The robust multi-plant capacitated lot-sizing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 302-330, July.
    6. Christian Scheller & Kerstin Schmidt & Thomas Stefan Spengler, 2021. "Decentralized master production and recycling scheduling of lithium-ion batteries: a techno-economic optimization model," Journal of Business Economics, Springer, vol. 91(2), pages 253-282, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, Daniel Filipe & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Design of a sales plan in a hybrid contractual and non-contractual context in a setting of limited capacity: A robust approach," International Journal of Production Economics, Elsevier, vol. 260(C).
    2. Morteza Lalmazloumian & Kuan Yew Wong & Kannan Govindan & Devika Kannan, 2016. "A robust optimization model for agile and build-to-order supply chain planning under uncertainties," Annals of Operations Research, Springer, vol. 240(2), pages 435-470, May.
    3. Aalaei, Amin & Davoudpour, Hamid, 2017. "A robust optimization model for cellular manufacturing system into supply chain management," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 667-679.
    4. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    5. Shuihua Han & Weina Ma & Ling Zhao & Xuelian Zhang & Ming K. Lim & Shuangyuan Yang & Stephen Leung, 2016. "A robust optimisation model for hybrid remanufacturing and manufacturing systems under uncertain return quality and market demand," International Journal of Production Research, Taylor & Francis Journals, vol. 54(17), pages 5056-5072, September.
    6. Nourelfath, Mustapha, 2011. "Service level robustness in stochastic production planning under random machine breakdowns," European Journal of Operational Research, Elsevier, vol. 212(1), pages 81-88, July.
    7. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon & Zhang, Abraham, 2018. "Agribusiness supply chain risk management: A review of quantitative decision models," Omega, Elsevier, vol. 79(C), pages 21-42.
    8. Meysam Hosseini & Arsalan Rahmani & F. Hooshmand, 2022. "A robust model for recharging station location problem," Operational Research, Springer, vol. 22(4), pages 4397-4440, September.
    9. Hashem Omrani & Farzane Adabi & Narges Adabi, 2017. "Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 816-828, July.
    10. Dehghani, Ehsan & Jabalameli, Mohammad Saeed & Jabbarzadeh, Armin, 2018. "Robust design and optimization of solar photovoltaic supply chain in an uncertain environment," Energy, Elsevier, vol. 142(C), pages 139-156.
    11. Jabbarzadeh, Armin & Haughton, Michael & Pourmehdi, Fahime, 2019. "A robust optimization model for efficient and green supply chain planning with postponement strategy," International Journal of Production Economics, Elsevier, vol. 214(C), pages 266-283.
    12. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    13. Azaron, A. & Brown, K.N. & Tarim, S.A. & Modarres, M., 2008. "A multi-objective stochastic programming approach for supply chain design considering risk," International Journal of Production Economics, Elsevier, vol. 116(1), pages 129-138, November.
    14. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
    15. Masoud Hekmatfar & M. R. M. Aliha & Mir Saman Pishvaee & Tomasz Sadowski, 2023. "A Robust Flexible Optimization Model for 3D-Layout of Interior Equipment in a Multi-Floor Satellite," Mathematics, MDPI, vol. 11(24), pages 1-41, December.
    16. Javid Jouzdani & Mohammad Fathian & Ahmad Makui & Mehdi Heydari, 2020. "Robust design and planning for a multi-mode multi-product supply network: a dairy industry case study," Operational Research, Springer, vol. 20(3), pages 1811-1840, September.
    17. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).
    18. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    19. Lida Safari & Seyed Jafar Sadjadi & Farzad Movahedi Sobhani, 2024. "Resilient and sustainable supply chain design and planning under supply disruption risk using a multi-objective scenario-based robust optimization model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 27485-27527, November.
    20. Qiang Fu & Tianxiao Li & Song Cui & Dong Liu & Xueping Lu, 2018. "Agricultural Multi-Water Source Allocation Model Based on Interval Two-Stage Stochastic Robust Programming under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1261-1274, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:20:p:6192-6215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.