IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v61y2013i3p578-592.html
   My bibliography  Save this article

Multiarea Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network

Author

Listed:
  • Anthony Papavasiliou

    (Department of Mathematical Engineering, Center for Operations Research and Econometrics, Catholic University of Louvain, B-1348 Louvain la Neuve, Belgium)

  • Shmuel S. Oren

    (Department of Industrial Engineering and Operations Research, University of California at Berkeley, Berkeley, California 94720)

Abstract

In this paper we present a unit commitment model for studying the impact of large-scale wind integration in power systems with transmission constraints and system component failures. The model is formulated as a two-stage stochastic program with uncertain wind production in various locations of the network as well as generator and transmission line failures. We present a scenario selection algorithm for selecting and weighing wind power production scenarios and composite element failures, and we provide a parallel dual decomposition algorithm for solving the resulting mixed-integer program. We validate the proposed scenario selection algorithm by demonstrating that it outperforms alternative reserve commitment approaches in a 225 bus model of California with 130 generators and 375 transmission lines. We use our model to quantify day-ahead generator capacity commitment, operating cost impacts, and renewable energy utilization levels for various degrees of wind power integration. We then demonstrate that failing to account for transmission constraints and contingencies can result in significant errors in assessing the economic impacts of renewable energy integration.

Suggested Citation

  • Anthony Papavasiliou & Shmuel S. Oren, 2013. "Multiarea Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network," Operations Research, INFORMS, vol. 61(3), pages 578-592, June.
  • Handle: RePEc:inm:oropre:v:61:y:2013:i:3:p:578-592
    DOI: 10.1287/opre.2013.1174
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2013.1174
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2013.1174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    4. Marshall L. Fisher, 1985. "An Applications Oriented Guide to Lagrangian Relaxation," Interfaces, INFORMS, vol. 15(2), pages 10-21, April.
    5. Latorre, Jesus M & Cerisola, Santiago & Ramos, Andres, 2007. "Clustering algorithms for scenario tree generation: Application to natural hydro inflows," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1339-1353, September.
    6. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    7. Matthias Nowak & Werner Römisch, 2000. "Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty," Annals of Operations Research, Springer, vol. 100(1), pages 251-272, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    2. Robert Fourer & Leo Lopes, 2006. "A management system for decompositions in stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 99-118, February.
    3. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    4. Hongling, Liu & Chuanwen, Jiang & Yan, Zhang, 2008. "A review on risk-constrained hydropower scheduling in deregulated power market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1465-1475, June.
    5. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    6. Trine K. Boomsma, 2019. "Comments on: A comparative study of time aggregation techniques in relation to power capacity-expansion modeling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 406-409, October.
    7. Suvrajeet Sen & Lihua Yu & Talat Genc, 2006. "A Stochastic Programming Approach to Power Portfolio Optimization," Operations Research, INFORMS, vol. 54(1), pages 55-72, February.
    8. Gaivoronski, Alexei & Sechi, Giovanni M. & Zuddas, Paola, 2012. "Cost/risk balanced management of scarce resources using stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 214-224.
    9. Wong, Man Hong, 2013. "Investment models based on clustered scenario trees," European Journal of Operational Research, Elsevier, vol. 227(2), pages 314-324.
    10. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    11. Cerisola, Santiago & Latorre, Jesus M. & Ramos, Andres, 2012. "Stochastic dual dynamic programming applied to nonconvex hydrothermal models," European Journal of Operational Research, Elsevier, vol. 218(3), pages 687-697.
    12. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    13. Geun-Cheol Lee & Martin Höhenrieder & Jean-Paul Watson & David Woodruff, 2015. "Chance and service level constraints for stochastic generation expansion planning," Netnomics, Springer, vol. 16(3), pages 169-191, December.
    14. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    15. Giovanni Pantuso & Trine K. Boomsma, 2020. "On the number of stages in multistage stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 581-603, September.
    16. Wim Ackooij & Jérôme Malick, 2016. "Decomposition algorithm for large-scale two-stage unit-commitment," Annals of Operations Research, Springer, vol. 238(1), pages 587-613, March.
    17. Gómez-Pérez, Jesús D. & Latorre-Canteli, Jesus M. & Ramos, Andres & Perea, Alejandro & Sanz, Pablo & Hernández, Francisco, 2024. "Improving operating policies in stochastic optimization: An application to the medium-term hydrothermal scheduling problem," Applied Energy, Elsevier, vol. 359(C).
    18. Steeger, Gregory & Rebennack, Steffen, 2017. "Dynamic convexification within nested Benders decomposition using Lagrangian relaxation: An application to the strategic bidding problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 669-686.
    19. Boris Defourny & Damien Ernst & Louis Wehenkel, 2013. "Scenario Trees and Policy Selection for Multistage Stochastic Programming Using Machine Learning," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 488-501, August.
    20. Wei Zhang & Kai Wang & Alexandre Jacquillat & Shuaian Wang, 2023. "Optimized Scenario Reduction: Solving Large-Scale Stochastic Programs with Quality Guarantees," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 886-908, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:61:y:2013:i:3:p:578-592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.