IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v58y2007i4d10.1057_palgrave.jors.2602159.html
   My bibliography  Save this article

A robust optimization model for production planning of perishable products

Author

Listed:
  • S C H Leung

    (City University of Hong Kong)

  • K K Lai

    (City University of Hong Kong
    Hunan University)

  • W-L Ng

    (City University of Hong Kong)

  • Y Wu

    (University of Southampton)

Abstract

In this study, a robust optimization model is developed to solve production planning problems for perishable products in an uncertain environment in which the setup costs, production costs, labour costs, inventory costs, and workforce changing costs are minimized. Using the concept of postponement, the production process for perishable products is differentiated into two phases to better utilize the resources. By adjusting penalty parameters, decision-makers can determine an optimal production loading plan and better utilize resources while considering different economic growth scenarios. A case from a Hong Kong plush toy company is studied and the characteristics of perishable products are discussed. Numerical results demonstrate the robustness and effectiveness of the proposed model. An analysis of the trade-off between solution robustness and model robustness is also presented.

Suggested Citation

  • S C H Leung & K K Lai & W-L Ng & Y Wu, 2007. "A robust optimization model for production planning of perishable products," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 413-422, April.
  • Handle: RePEc:pal:jorsoc:v:58:y:2007:i:4:d:10.1057_palgrave.jors.2602159
    DOI: 10.1057/palgrave.jors.2602159
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602159
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    2. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    3. Raymond K.-M. Cheung & Warren B. Powell, 1996. "Models and Algorithms for Distribution Problems with Uncertain Demands," Transportation Science, INFORMS, vol. 30(1), pages 43-59, February.
    4. Yu, Chian-Son & Li, Han-Lin, 2000. "A robust optimization model for stochastic logistic problems," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 385-397, March.
    5. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    6. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Varas, Mauricio & Maturana, Sergio & Pascual, Rodrigo & Vargas, Ignacio & Vera, Jorge, 2014. "Scheduling production for a sawmill: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 150(C), pages 37-51.
    2. Zamani Dadaneh, Dariush & Moradi, Sajad & Alizadeh, Behrooz, 2023. "Simultaneous planning of purchase orders, production, and inventory management under demand uncertainty," International Journal of Production Economics, Elsevier, vol. 265(C).
    3. Jabbarzadeh, Armin & Haughton, Michael & Pourmehdi, Fahime, 2019. "A robust optimization model for efficient and green supply chain planning with postponement strategy," International Journal of Production Economics, Elsevier, vol. 214(C), pages 266-283.
    4. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon & Zhang, Abraham, 2018. "Agribusiness supply chain risk management: A review of quantitative decision models," Omega, Elsevier, vol. 79(C), pages 21-42.
    5. Shuihua Han & Yue Jiang & Ling Zhao & Stephen C. H. Leung & Zongwei Luo, 2020. "Weight reduction technology and supply chain network design under carbon emission restriction," Annals of Operations Research, Springer, vol. 290(1), pages 567-590, July.
    6. Donya Rahmani & Arash Zandi & Sara Behdad & Arezou Entezaminia, 2021. "A light robust model for aggregate production planning with consideration of environmental impacts of machines," Operational Research, Springer, vol. 21(1), pages 273-297, March.
    7. Jahani, Hamed & Abbasi, Babak & Alavifard, Farzad & Talluri, Srinivas, 2018. "Supply chain network redesign with demand and price uncertainty," International Journal of Production Economics, Elsevier, vol. 205(C), pages 287-312.
    8. Borodin, Valeria & Bourtembourg, Jean & Hnaien, Faicel & Labadie, Nacima, 2016. "Handling uncertainty in agricultural supply chain management: A state of the art," European Journal of Operational Research, Elsevier, vol. 254(2), pages 348-359.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
    2. Yan, Shangyao & Tang, Ching-Hui, 2009. "Inter-city bus scheduling under variable market share and uncertain market demands," Omega, Elsevier, vol. 37(1), pages 178-192, February.
    3. Yan, Shangyao & Tang, Ching-Hui, 2007. "A heuristic approach for airport gate assignments for stochastic flight delays," European Journal of Operational Research, Elsevier, vol. 180(2), pages 547-567, July.
    4. Shangyao Yan & Ching-Hui Tang, 2008. "An Integrated Framework for Intercity Bus Scheduling Under Stochastic Bus Travel Times," Transportation Science, INFORMS, vol. 42(3), pages 318-335, August.
    5. Hashem Omrani & Farzane Adabi & Narges Adabi, 2017. "Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 816-828, July.
    6. João Flávio de Freitas Almeida & Samuel Vieira Conceição & Luiz Ricardo Pinto & Ricardo Saraiva de Camargo & Gilberto de Miranda Júnior, 2018. "Flexibility evaluation of multiechelon supply chains," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-27, March.
    7. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    8. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).
    9. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    10. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    11. Lassiter, Kyle & Khademi, Amin & Taaffe, Kevin M., 2015. "A robust optimization approach to volunteer management in humanitarian crises," International Journal of Production Economics, Elsevier, vol. 163(C), pages 97-111.
    12. Alizadeh, Morteza & Amiri-Aref, Mehdi & Mustafee, Navonil & Matilal, Sumohon, 2019. "A robust stochastic Casualty Collection Points location problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 965-983.
    13. Zhao, Yonggan & Ziemba, William T., 2008. "Calculating risk neutral probabilities and optimal portfolio policies in a dynamic investment model with downside risk control," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1525-1540, March.
    14. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    15. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.
    16. Tsai, Jung-Fa, 2007. "An optimization approach for supply chain management models with quantity discount policy," European Journal of Operational Research, Elsevier, vol. 177(2), pages 982-994, March.
    17. Murat Köksalan & Ceren Tuncer Şakar, 2016. "An interactive approach to stochastic programming-based portfolio optimization," Annals of Operations Research, Springer, vol. 245(1), pages 47-66, October.
    18. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    19. Hongling, Liu & Chuanwen, Jiang & Yan, Zhang, 2008. "A review on risk-constrained hydropower scheduling in deregulated power market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1465-1475, June.
    20. Seyed Babak Ebrahimi & Ehsan Bagheri, 2022. "A multi-objective formulation for the closed-loop plastic supply chain under uncertainty," Operational Research, Springer, vol. 22(5), pages 4725-4768, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:58:y:2007:i:4:d:10.1057_palgrave.jors.2602159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.