IDEAS home Printed from https://ideas.repec.org/a/kap/mktlet/v34y2023i3d10.1007_s11002-023-09666-7.html
   My bibliography  Save this article

Movie fit uncertainty and interplay between traditional advertising and social media marketing

Author

Listed:
  • Yinan Yu

    (University of Memphis)

  • Liangfei Qiu

    (Warrington College of Business, University of Florida, University of Florida)

  • Hailiang Chen

    (The University of Hong Kong)

  • Benjamin Yen

    (The University of Hong Kong)

Abstract

Although brands have widely adopted multiple marketing media, our understanding of how to effectively coordinate traditional advertising and social media marketing to improve business outcomes is still limited. This paper examines the role of product fit uncertainty in determining how the two media and their interaction affect product sales differently in the context of the motion picture industry. We first find that traditional advertising is more effective for products with a lower level of fit uncertainty, while social media marketing benefits products with a higher level of fit uncertainty more. More importantly, these two media are more likely to substitute each other for low-fit uncertainty products and complement each other for high-fit uncertainty products. To further provide practical implications on tailoring social media content, we show that marketers’ social media posts featuring experience attributes have a larger effect on the sales of high-fit uncertainty products, while social media posts featuring search attributes benefit low-fit uncertainty product more. This study sheds lights on how firms can align their multichannel marketing strategy with product characteristics and effectively communicate the relevant product information with customers to enhance sales.

Suggested Citation

  • Yinan Yu & Liangfei Qiu & Hailiang Chen & Benjamin Yen, 2023. "Movie fit uncertainty and interplay between traditional advertising and social media marketing," Marketing Letters, Springer, vol. 34(3), pages 429-448, September.
  • Handle: RePEc:kap:mktlet:v:34:y:2023:i:3:d:10.1007_s11002-023-09666-7
    DOI: 10.1007/s11002-023-09666-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11002-023-09666-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11002-023-09666-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avi Goldfarb & Catherine Tucker, 2011. "Online Display Advertising: Targeting and Obtrusiveness," Marketing Science, INFORMS, vol. 30(3), pages 389-404, 05-06.
    2. V. Kumar & Vikram Bhaskaran & Rohan Mirchandani & Milap Shah, 2013. "Practice Prize Winner ---Creating a Measurable Social Media Marketing Strategy: Increasing the Value and ROI of Intangibles and Tangibles for Hokey Pokey," Marketing Science, INFORMS, vol. 32(2), pages 194-212, March.
    3. Milgrom, Paul & Roberts, John, 1986. "Price and Advertising Signals of Product Quality," Journal of Political Economy, University of Chicago Press, vol. 94(4), pages 796-821, August.
    4. Avi Goldfarb & Catherine Tucker, 2011. "Rejoinder--Implications of "Online Display Advertising: Targeting and Obtrusiveness"," Marketing Science, INFORMS, vol. 30(3), pages 413-415, 05-06.
    5. Nelson, Philip, 1974. "Advertising as Information," Journal of Political Economy, University of Chicago Press, vol. 82(4), pages 729-754, July/Aug..
    6. Shyam Gopinath & Pradeep K. Chintagunta & Sriram Venkataraman, 2013. "Blogs, Advertising, and Local-Market Movie Box Office Performance," Management Science, INFORMS, vol. 59(12), pages 2635-2654, December.
    7. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    8. Yubo Chen & Jinhong Xie, 2005. "Third-Party Product Review and Firm Marketing Strategy," Marketing Science, INFORMS, vol. 24(2), pages 218-240, February.
    9. Yili (Kevin) Hong & Paul A. Pavlou, 2014. "Product Fit Uncertainty in Online Markets: Nature, Effects, and Antecedents," Information Systems Research, INFORMS, vol. 25(2), pages 328-344, June.
    10. Duan, Wenjing & Gu, Bin & Whinston, Andrew B., 2008. "The dynamics of online word-of-mouth and product sales—An empirical investigation of the movie industry," Journal of Retailing, Elsevier, vol. 84(2), pages 233-242.
    11. Naik, Prasad A. & Peters, Kay, 2009. "A Hierarchical Marketing Communications Model of Online and Offline Media Synergies," Journal of Interactive Marketing, Elsevier, vol. 23(4), pages 288-299.
    12. Xitong Li, 2018. "Impact of Average Rating on Social Media Endorsement: The Moderating Role of Rating Dispersion and Discount Threshold," Information Systems Research, INFORMS, vol. 29(3), pages 739-754, September.
    13. Yen-Yao Wang & Chenhui Guo & Anjana Susarla & Vallabh Sambamurthy, 2021. "Online to Offline: The Impact of Social Media on Offline Sales in the Automobile Industry," Information Systems Research, INFORMS, vol. 32(2), pages 582-604, June.
    14. Steffen Zimmermann & Philipp Herrmann & Dennis Kundisch & Barrie R. Nault, 2018. "Decomposing the Variance of Consumer Ratings and the Impact on Price and Demand," Information Systems Research, INFORMS, vol. 29(4), pages 984-1002, December.
    15. Avi Goldfarb & Catherine Tucker, 2011. "Search Engine Advertising: Channel Substitution When Pricing Ads to Context," Management Science, INFORMS, vol. 57(3), pages 458-470, March.
    16. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    17. Youngsoo Kim & Ramayya Krishnan, 2015. "On Product-Level Uncertainty and Online Purchase Behavior: An Empirical Analysis," Management Science, INFORMS, vol. 61(10), pages 2449-2467, October.
    18. Pradeep K. Chintagunta & Shyam Gopinath & Sriram Venkataraman, 2010. "The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets," Marketing Science, INFORMS, vol. 29(5), pages 944-957, 09-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qili Wang & Liangfei Qiu & Wei Xu, 2024. "Informal Payments and Doctor Engagement in an Online Health Community: An Empirical Investigation Using Generalized Synthetic Control," Information Systems Research, INFORMS, vol. 35(2), pages 706-726, June.
    2. Shao, Zhucheng, 2024. "From human to virtual: Unmasking consumer switching intentions to virtual influencers by an integrated fsQCA and NCA method," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young Kwark & Gene Moo Lee & Paul A. Pavlou & Liangfei Qiu, 2021. "On the Spillover Effects of Online Product Reviews on Purchases: Evidence from Clickstream Data," Information Systems Research, INFORMS, vol. 32(3), pages 895-913, September.
    2. Peitz, Martin & Reisinger, Markus, 2014. "The Economics of Internet Media," Working Papers 14-23, University of Mannheim, Department of Economics.
    3. Tingting Song & Jinghua Huang & Yong Tan & Yifan Yu, 2019. "Using User- and Marketer-Generated Content for Box Office Revenue Prediction: Differences Between Microblogging and Third-Party Platforms," Service Science, INFORMS, vol. 30(1), pages 191-203, March.
    4. Simon Pröll & Giannis Karagiannis & Klaus Salhofer, 2019. "Advertising and Markups: The Case of the German Brewing Industry," Working Papers 732019, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    5. Xiang Hui & Meng Liu, 2022. "Quality Certificates Alleviate Consumer Aversion to Sponsored Search Advertising," CESifo Working Paper Series 9886, CESifo.
    6. repec:zbw:inwedp:732019 is not listed on IDEAS
    7. Zhen, Xueping & (George) Cai, Gangshu & Song, Reo & Jang, Sungha, 2019. "The effects of herding and word of mouth in a two-period advertising signaling model," European Journal of Operational Research, Elsevier, vol. 275(1), pages 361-373.
    8. C. Clark & Ulrich Doraszelski & Michaela Draganska, 2009. "The effect of advertising on brand awareness and perceived quality: An empirical investigation using panel data," Quantitative Marketing and Economics (QME), Springer, vol. 7(2), pages 207-236, June.
    9. Pröll, Simon & Salhofer, Klaus & Karagiannis, Giannis, 2019. "Advertising and Markups: The Case of the German Brewing Industry," Discussion Papers DP-73-2019, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    10. Michael A. Wiles & Saeed Janani & Darima Fotheringham & Chadwick J. Miller, 2024. "A Longitudinal Examination of the Relationship Between National-Level Per Capita Advertising Expenditure and National-Level Life Satisfaction Across 76 Countries," Marketing Science, INFORMS, vol. 43(3), pages 542-563, May.
    11. Hailiang Chen & Prabuddha De & Yu Jeffrey Hu, 2015. "IT-Enabled Broadcasting in Social Media: An Empirical Study of Artists’ Activities and Music Sales," Information Systems Research, INFORMS, vol. 26(3), pages 513-531, September.
    12. Dokyun Lee & Kartik Hosanagar, 2021. "How Do Product Attributes and Reviews Moderate the Impact of Recommender Systems Through Purchase Stages?," Management Science, INFORMS, vol. 67(1), pages 524-546, January.
    13. Cheng Zhao & Chong Alex Wang, 2023. "A cross-site comparison of online review manipulation using Benford’s law," Electronic Commerce Research, Springer, vol. 23(1), pages 365-406, March.
    14. Marchand, André & Hennig-Thurau, Thorsten & Wiertz, Caroline, 2017. "Not all digital word of mouth is created equal: Understanding the respective impact of consumer reviews and microblogs on new product success," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 336-354.
    15. Kireyev, Pavel & Pauwels, Koen & Gupta, Sunil, 2016. "Do display ads influence search? Attribution and dynamics in online advertising," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 475-490.
    16. Jake Hoskins & Shyam Gopinath & J. Cameron Verhaal & Elham Yazdani, 2021. "The influence of the online community, professional critics, and location similarity on review ratings for niche and mainstream brands," Journal of the Academy of Marketing Science, Springer, vol. 49(6), pages 1065-1087, November.
    17. Kordrostami, Elika & Rahmani, Vahid, 2020. "Investigating conflicting online review information:evidence from Amazon.com," Journal of Retailing and Consumer Services, Elsevier, vol. 55(C).
    18. Doraszelski, Ulrich & Draganska, Michaela & Clark, C. Robert, 2007. "Information or Persuasion? An Empirical Investigation of the Effect of Advertising on Brand Awareness and Perceived Quality using Panel Data," Research Papers 1971, Stanford University, Graduate School of Business.
    19. Shijie Lu & Xin (Shane) Wang & Neil Bendle, 2020. "Does Piracy Create Online Word of Mouth? An Empirical Analysis in the Movie Industry," Management Science, INFORMS, vol. 66(5), pages 2140-2162, May.
    20. Randall Lewis & Dan Nguyen, 2015. "Display advertising’s competitive spillovers to consumer search," Quantitative Marketing and Economics (QME), Springer, vol. 13(2), pages 93-115, June.
    21. Duan, Yongrui & Liu, Tonghui & Mao, Zhixin, 2022. "How online reviews and coupons affect sales and pricing: An empirical study based on e-commerce platform," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:mktlet:v:34:y:2023:i:3:d:10.1007_s11002-023-09666-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.