IDEAS home Printed from https://ideas.repec.org/a/kap/mktlet/v22y2011i3p315-326.html
   My bibliography  Save this article

How does awareness evolve when advertising stops? The role of memory

Author

Listed:
  • Ashwin Aravindakshan
  • Prasad Naik

Abstract

No abstract is available for this item.

Suggested Citation

  • Ashwin Aravindakshan & Prasad Naik, 2011. "How does awareness evolve when advertising stops? The role of memory," Marketing Letters, Springer, vol. 22(3), pages 315-326, September.
  • Handle: RePEc:kap:mktlet:v:22:y:2011:i:3:p:315-326
    DOI: 10.1007/s11002-010-9127-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11002-010-9127-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11002-010-9127-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prasad A. Naik & Murali K. Mantrala & Alan G. Sawyer, 1998. "Planning Media Schedules in the Presence of Dynamic Advertising Quality," Marketing Science, INFORMS, vol. 17(3), pages 214-235.
    2. Norris I. Bruce, 2008. "Pooling and Dynamic Forgetting Effects in Multitheme Advertising: Tracking the Advertising Sales Relationship with Particle Filters," Marketing Science, INFORMS, vol. 27(4), pages 659-673, 07-08.
    3. Bellen, Alfredo & Zennaro, Marino, 2003. "Numerical Methods for Delay Differential Equations," OUP Catalogue, Oxford University Press, number 9780198506546.
    4. Frank M. Bass & Norris Bruce & Sumit Majumdar & B. P. S. Murthi, 2007. "Wearout Effects of Different Advertising Themes: A Dynamic Bayesian Model of the Advertising-Sales Relationship," Marketing Science, INFORMS, vol. 26(2), pages 179-195, 03-04.
    5. Vijay Mahajan & Eitan Muller & Subhash Sharma, 1984. "An Empirical Comparison of Awareness Forecasting Models of New Product Introduction," Marketing Science, INFORMS, vol. 3(3), pages 179-197.
    6. Vijay Mahajan & Eitan Muller, 1986. "Advertising Pulsing Policies for Generating Awareness for New Products," Marketing Science, INFORMS, vol. 5(2), pages 89-106.
    7. Vijay Mahajan & Eitan Muller, 1986. "Reply—Reflections on Advertising Pulsing Policies for Generating Awareness for New Products," Marketing Science, INFORMS, vol. 5(2), pages 110-111.
    8. M. L. Vidale & H. B. Wolfe, 1957. "An Operations-Research Study of Sales Response to Advertising," Operations Research, INFORMS, vol. 5(3), pages 370-381, June.
    9. Prasad A. Naik & Ashutosh Prasad & Suresh P. Sethi, 2008. "Building Brand Awareness in Dynamic Oligopoly Markets," Management Science, INFORMS, vol. 54(1), pages 129-138, January.
    10. Jean-Pierre Dubé & Günter Hitsch & Puneet Manchanda, 2005. "An Empirical Model of Advertising Dynamics," Quantitative Marketing and Economics (QME), Springer, vol. 3(2), pages 107-144, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omid Rafieian, 2023. "Optimizing User Engagement Through Adaptive Ad Sequencing," Marketing Science, INFORMS, vol. 42(5), pages 910-933, September.
    2. Gijsenberg, Maarten & Nijs, Vincent R., 2018. "Advertising Timing," Research Report 2018004-MARK, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    3. Li, Xiaolin & Rao, Raghunath Singh & Narasimhan, Om & Gao, Xing, 2022. "Stay positive or go negative? Memory imperfections and messaging strategy," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 1127-1149.
    4. Yanwu Yang & Daniel Zeng & Yinghui Yang & Jie Zhang, 2015. "Optimal Budget Allocation Across Search Advertising Markets," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 285-300, May.
    5. Becker, Maren & Gijsenberg, Maarten J., 2023. "Consistency and commonality in advertising content: Helping or Hurting?," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 128-145.
    6. Ghosh, Tathagata & S., Sreejesh & Dwivedi, Yogesh K., 2021. "Examining the Deferred Effects of Gaming Platform and Game Speed of Advergames on Memory, Attitude, and Purchase Intention," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 52-66.
    7. Antonetti, Paolo & Baines, Paul & Jain, Shailendra, 2018. "The persuasiveness of guilt appeals over time: Pathways to delayed compliance," Journal of Business Research, Elsevier, vol. 90(C), pages 14-25.
    8. Ashwin Aravindakshan & Olivier Rubel & Oliver Rutz, 2015. "Managing Blood Donations with Marketing," Marketing Science, INFORMS, vol. 34(2), pages 269-280, March.
    9. Olivier Rubel & Ashutosh Prasad, 2016. "Dynamic Incentives in Sales Force Compensation," Marketing Science, INFORMS, vol. 35(4), pages 676-689, July.
    10. Philippe Aurier & Anne Broz-Giroux, 2014. "Modeling advertising impact at campaign level: Empirical generalizations relative to long-term advertising profit contribution and its antecedents," Marketing Letters, Springer, vol. 25(2), pages 193-206, June.
    11. Shi, Jianmai & Chen, Wenyi & Verter, Vedat, 2023. "The joint impact of environmental awareness and system infrastructure on e-waste collection," European Journal of Operational Research, Elsevier, vol. 310(2), pages 760-772.
    12. Gijsenberg, Maarten J. & Nijs, Vincent R., 2019. "Advertising spending patterns and competitor impact," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 232-250.
    13. Ashwin Aravindakshan & Prasad A. Naik, 2015. "Understanding the Memory Effects in Pulsing Advertising," Operations Research, INFORMS, vol. 63(1), pages 35-47, February.
    14. Pietro De Giovanni, 2020. "An optimal control model with defective products and goodwill damages," Annals of Operations Research, Springer, vol. 289(2), pages 419-430, June.
    15. Li, Xiaolin & Singh Rao, Raghunath & Narasimhan, Om & Gao, Xing, 2022. "Stay positive or go negative? Memory imperfections and messaging strategy," LSE Research Online Documents on Economics 113556, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashwin Aravindakshan & Prasad A. Naik, 2015. "Understanding the Memory Effects in Pulsing Advertising," Operations Research, INFORMS, vol. 63(1), pages 35-47, February.
    2. Navdeep Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.
    3. Huang, Jian & Leng, Mingming & Liang, Liping, 2012. "Recent developments in dynamic advertising research," European Journal of Operational Research, Elsevier, vol. 220(3), pages 591-609.
    4. Navdeep S. Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.
    5. Frank M. Bass & Norris Bruce & Sumit Majumdar & B. P. S. Murthi, 2007. "Wearout Effects of Different Advertising Themes: A Dynamic Bayesian Model of the Advertising-Sales Relationship," Marketing Science, INFORMS, vol. 26(2), pages 179-195, 03-04.
    6. Mesak, Hani Ibrahim & Bari, Abdullahel & Lian, Qin, 2015. "Pulsation in a competitive model of advertising-firm's cost interaction," European Journal of Operational Research, Elsevier, vol. 246(3), pages 916-926.
    7. Yanwu Yang & Baozhu Feng & Joni Salminen & Bernard J. Jansen, 2022. "Optimal advertising for a generalized Vidale–Wolfe response model," Electronic Commerce Research, Springer, vol. 22(4), pages 1275-1305, December.
    8. Prasad A. Naik & Murali K. Mantrala & Alan G. Sawyer, 1998. "Planning Media Schedules in the Presence of Dynamic Advertising Quality," Marketing Science, INFORMS, vol. 17(3), pages 214-235.
    9. Konstantin Kogan & Avi Herbon & Beatrice Venturi, 2020. "Direct marketing of an event under hazards of customer saturation and forgetting," Annals of Operations Research, Springer, vol. 295(1), pages 207-227, December.
    10. Michael Braun & Wendy W. Moe, 2013. "Online Display Advertising: Modeling the Effects of Multiple Creatives and Individual Impression Histories," Marketing Science, INFORMS, vol. 32(5), pages 753-767, September.
    11. Ryan Dew & Nicolas Padilla & Anya Shchetkina, 2024. "Your MMM is Broken: Identification of Nonlinear and Time-varying Effects in Marketing Mix Models," Papers 2408.07678, arXiv.org.
    12. Gijsenberg, Maarten J. & Nijs, Vincent R., 2019. "Advertising spending patterns and competitor impact," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 232-250.
    13. Marshall Freimer & Dan Horsky, 2012. "Periodic Advertising Pulsing in a Competitive Market," Marketing Science, INFORMS, vol. 31(4), pages 637-648, July.
    14. C. Clark & Ulrich Doraszelski & Michaela Draganska, 2009. "The effect of advertising on brand awareness and perceived quality: An empirical investigation using panel data," Quantitative Marketing and Economics (QME), Springer, vol. 7(2), pages 207-236, June.
    15. Luzon, Yossi & Pinchover, Rotem & Khmelnitsky, Eugene, 2022. "Dynamic budget allocation for social media advertising campaigns: optimization and learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 223-234.
    16. Mesak, Hani I. & Ellis, T. Selwyn, 2009. "On the superiority of pulsing under a concave advertising market potential function," European Journal of Operational Research, Elsevier, vol. 194(2), pages 608-627, April.
    17. Landry, Peter, 2022. "Pricing, advertising, and endogenous consideration of an “insistent” product," International Journal of Industrial Organization, Elsevier, vol. 80(C).
    18. Yan Liu & Venkatesh Shankar, 2015. "The Dynamic Impact of Product-Harm Crises on Brand Preference and Advertising Effectiveness: An Empirical Analysis of the Automobile Industry," Management Science, INFORMS, vol. 61(10), pages 2514-2535, October.
    19. Olivier Rubel & Prasad A. Naik, 2017. "Robust Dynamic Estimation," Marketing Science, INFORMS, vol. 36(3), pages 453-467, May.
    20. Mesak, Hani I. & Calloway, James A., 1995. "A pulsing model of advertising competition: A game theoretic approach, part A -- Theoretical foundation," European Journal of Operational Research, Elsevier, vol. 86(2), pages 231-248, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:mktlet:v:22:y:2011:i:3:p:315-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.