IDEAS home Printed from https://ideas.repec.org/a/kap/qmktec/v3y2005i2p107-144.html
   My bibliography  Save this article

An Empirical Model of Advertising Dynamics

Author

Listed:
  • Jean-Pierre Dubé
  • Günter Hitsch
  • Puneet Manchanda

Abstract

This paper develops a model of dynamic advertising competition, and applies it to the problem of optimal advertising scheduling through time. In many industries we observe advertising “pulsing”, whereby firms systematically switch advertising on and off at a high-frequency. Hence, we observe periods of zero and non-zero advertising, as opposed to a steady level of positive advertising. Previous research has rationalized pulsing through two features of the sale response function: an S-shaped response to advertising, and long-run effects of current advertising on demand. Despite considerable evidence for advertising carry-over, existing evidence for non-convexities in the shape of the sales-response to advertising has been limited and, often, mixed. We show how both features can be included in a discrete choice based demand system and estimated using a simple partial maximum likelihood estimator. The demand estimates are then taken to the supply side, where we simulate the outcome of a dynamic game using the Markov perfect equilibrium (MPE) concept. Our objective is not to test for the specific game generating observed advertising levels. Rather, we wish to verify whether the use of pulsing (on and off) can be justified as an equilibrium advertising practice. We solve for the equilibrium using numerical dynamic programming methods. The flexibility provided by the numerical solution method allows us to improve on the existing literature, which typically considers only two competitors, and places strong restrictions on the demand models for which the supply side policies can be obtained. We estimate the demand model using data from the Frozen Entree product category. We find evidence for a threshold effect, which is qualitatively similar to the aforementioned S-shaped advertising response. We also show that the threshold is robust to functional form assumptions for the marginal impact of advertising on demand. Our estimates, which are obtained without imposing any supply side restrictions, imply that firms should indeed pulse in equilibrium. Predicted advertising in the MPE is higher, on average, than observed advertising. On average, the optimal advertising policies yield a moderate profit improvement over the profits under observed advertising. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Jean-Pierre Dubé & Günter Hitsch & Puneet Manchanda, 2005. "An Empirical Model of Advertising Dynamics," Quantitative Marketing and Economics (QME), Springer, vol. 3(2), pages 107-144, June.
  • Handle: RePEc:kap:qmktec:v:3:y:2005:i:2:p:107-144
    DOI: 10.1007/s11129-005-0334-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11129-005-0334-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11129-005-0334-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ariel Pakes & Paul McGuire, 1994. "Computing Markov-Perfect Nash Equilibria: Numerical Implications of a Dynamic Differentiated Product Model," RAND Journal of Economics, The RAND Corporation, vol. 25(4), pages 555-589, Winter.
    2. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    3. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    4. Vijay Mahajan & Eitan Muller, 1986. "Advertising Pulsing Policies for Generating Awareness for New Products," Marketing Science, INFORMS, vol. 5(2), pages 89-106.
    5. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    6. J. Miguel Villas-Boas, 1993. "Predicting Advertising Pulsing Policies in an Oligopoly: A Model and Empirical Test," Marketing Science, INFORMS, vol. 12(1), pages 88-102.
    7. Richard Ericson & Ariel Pakes, 1995. "Markov-Perfect Industry Dynamics: A Framework for Empirical Work," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(1), pages 53-82.
    8. Hugo Benitez-Silva & John Rust & Gunter Hitsch & Giorgio Pauletto & George Hall, 2000. "A Comparison Of Discrete And Parametric Methods For Continuous-State Dynamic Programming Problems," Computing in Economics and Finance 2000 24, Society for Computational Economics.
    9. Slade, Margaret E, 1995. "Product Rivalry with Multiple Strategic Weapons: An Analysis of Price and Advertising Competition," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 4(3), pages 445-476, Fall.
    10. Demetrios Vakratsas & Fred M. Feinberg & Frank M. Bass & Gurumurthy Kalyanaram, 2004. "The Shape of Advertising Response Functions Revisited: A Model of Dynamic Probabilistic Thresholds," Marketing Science, INFORMS, vol. 23(1), pages 109-119, April.
    11. Ulrich Doraszelski & Mark Satterthwaite, 2003. "Foundations of Markov-Perfect Industry Dynamics. Existence, Purification, and Multiplicity," Discussion Papers 1383, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    12. Rust, John, 1996. "Numerical dynamic programming in economics," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 14, pages 619-729, Elsevier.
    13. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    14. H. M. Amman & D. A. Kendrick & J. Rust (ed.), 1996. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 1, number 1.
    15. Mark J. Roberts & Larry Samuelson, 1988. "An Empirical Analysis of Dynamic, Nonprice Competition in an Oligopolistic Industry," RAND Journal of Economics, The RAND Corporation, vol. 19(2), pages 200-220, Summer.
    16. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    17. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    18. Naufel J. Vilcassim & Vrinda Kadiyali & Pradeep K. Chintagunta, 1999. "Investigating Dynamic Multifirm Market Interactions in Price and Advertising," Management Science, INFORMS, vol. 45(4), pages 499-518, April.
    19. Chen, Xiaoheng & Conley, Timothy G., 2001. "A new semiparametric spatial model for panel time series," Journal of Econometrics, Elsevier, vol. 105(1), pages 59-83, November.
    20. Pradeep Chintagunta & Jean-Pierre Dubé & Khim Yong Goh, 2005. "Beyond the Endogeneity Bias: The Effect of Unmeasured Brand Characteristics on Household-Level Brand Choice Models," Management Science, INFORMS, vol. 51(5), pages 832-849, May.
    21. Ackerberg, Daniel A, 2001. "Empirically Distinguishing Informative and Prestige Effects of Advertising," RAND Journal of Economics, The RAND Corporation, vol. 32(2), pages 316-333, Summer.
    22. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1.
    23. J. Miguel Villas-Boas & Russell S. Winer, 1999. "Endogeneity in Brand Choice Models," Management Science, INFORMS, vol. 45(10), pages 1324-1338, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Tat Y. & Narasimhan, Chakravarthi & Yoon, Yeujun, 2017. "Advertising and price competition in a manufacturer-retailer channel," International Journal of Research in Marketing, Elsevier, vol. 34(3), pages 694-716.
    2. Harikesh Nair, 2007. "Intertemporal price discrimination with forward-looking consumers: Application to the US market for console video-games," Quantitative Marketing and Economics (QME), Springer, vol. 5(3), pages 239-292, September.
    3. Victor Aguirregabiria & Gustavo Vicentini, 2006. "Dynamic Spatial Competition Between Multi-Store Firms," Working Papers tecipa-253, University of Toronto, Department of Economics.
    4. Jean-Pierre Dubé & K. Sudhir & Andrew Ching & Gregory Crawford & Michaela Draganska & Jeremy Fox & Wesley Hartmann & Günter Hitsch & V. Viard & Miguel Villas-Boas & Naufel Vilcassim, 2005. "Recent Advances in Structural Econometric Modeling: Dynamics, Product Positioning and Entry," Marketing Letters, Springer, vol. 16(3), pages 209-224, December.
    5. Simon P. Anderson & Federico Ciliberto & Jura Liaukonyte & Régis Renault, 2016. "Push-me pull-you: comparative advertising in the OTC analgesics industry," RAND Journal of Economics, RAND Corporation, vol. 47(4), pages 1029-1056, November.
    6. Yonezawa, Koichi & Richards, Timothy J., 2016. "Competitive Package Size Decisions," Journal of Retailing, Elsevier, vol. 92(4), pages 445-469.
    7. Griffith, Rachel & Dubois, Pierre & O'Connell, Martin, 2014. "The Effects of Banning Advertising on Demand, Supply and Welfare: Structural Estimation on a Junk Food Market," CEPR Discussion Papers 9942, C.E.P.R. Discussion Papers.
    8. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    9. Aruoba, S. Boragan & Fernandez-Villaverde, Jesus & Rubio-Ramirez, Juan F., 2006. "Comparing solution methods for dynamic equilibrium economies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2477-2508, December.
    10. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    11. Francis X. Diebold, 1998. "The Past, Present, and Future of Macroeconomic Forecasting," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 175-192, Spring.
    12. Alicia Barroso & Gerard Llobet, 2011. "Advertising and Consumer Awareness of New, Differentiated Products," Working Papers wp2011_1104, CEMFI.
    13. Gamba, Andrea & Tesser, Matteo, 2009. "Structural estimation of real options models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 798-816, April.
    14. Michaela Draganska & Dipak Jain, 2004. "A Likelihood Approach to Estimating Market Equilibrium Models," Management Science, INFORMS, vol. 50(5), pages 605-616, May.
    15. David Besanko & Jean-Pierre Dubé & Sachin Gupta, 2003. "Competitive Price Discrimination Strategies in a Vertical Channel Using Aggregate Retail Data," Management Science, INFORMS, vol. 49(9), pages 1121-1138, September.
    16. Thierry Magnac & Pierre Dubois, 2016. "Consumer Demand with Unobserved Stockpiling and Intertemporal Price Discrimination," 2016 Meeting Papers 451, Society for Economic Dynamics.
    17. Michael Cohen & Adam Rabinowitz, 2012. "An Empirical Analysis of Equilibrium Pricing and Advertising in the Ready-To-Eat Cereal Market," Working Papers 15, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.
    18. Toker Doganoglu & Daniel Klapper, 2006. "Goodwill and dynamic advertising strategies," Quantitative Marketing and Economics (QME), Springer, vol. 4(1), pages 5-29, March.
    19. K. Sudhir, 2001. "Competitive Pricing Behavior in the Auto Market: A Structural Analysis," Marketing Science, INFORMS, vol. 20(1), pages 42-60, January.
    20. Richard Schmalensee, 2012. "“On a Level with Dentists?” Reflections on the Evolution of Industrial Organization," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 41(3), pages 157-179, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:3:y:2005:i:2:p:107-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.