IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v27y2024i2d10.1007_s10729-024-09671-w.html
   My bibliography  Save this article

An optimization framework for large-scale screening under limited testing capacity with application to COVID-19

Author

Listed:
  • Jiayi Lin

    (Texas A &M University)

  • Hrayer Aprahamian

    (Texas A &M University)

  • George Golovko

    (The University of Texas Medical Branch)

Abstract

We consider the problem of targeted mass screening of heterogeneous populations under limited testing capacity. Mass screening is an essential tool that arises in various settings, e.g., ensuring a safe supply of blood, reducing prevalence of sexually transmitted diseases, and mitigating the spread of infectious disease outbreaks. The goal of mass screening is to classify whole population groups as positive or negative for an infectious disease as efficiently and accurately as possible. Under limited testing capacity, it is not possible to screen the entire population and hence administrators must reserve testing and target those among the population that are most in need or most susceptible. This paper addresses this decision problem by taking advantage of accessible population-level risk information to identify the optimal set of sub-populations to target for screening. We conduct a comprehensive analysis that considers the two most commonly adopted schemes: Individual testing and Dorfman group testing. For both schemes, we formulate an optimization model that aims to minimize the number of misclassifications under a testing capacity constraint. By analyzing the formulations, we establish key structural properties which we use to construct efficient and accurate solution techniques. We conduct a case study on COVID-19 in the United States using geographic-based data. Our results reveal that the considered proactive targeted schemes outperform commonly adopted practices by substantially reducing misclassifications. Our case study provides important managerial insights with regards to optimal allocation of tests, testing designs, and protocols that dictate the optimality of schemes. Such insights can inform policy-makers with tailored and implementable data-driven recommendations.

Suggested Citation

  • Jiayi Lin & Hrayer Aprahamian & George Golovko, 2024. "An optimization framework for large-scale screening under limited testing capacity with application to COVID-19," Health Care Management Science, Springer, vol. 27(2), pages 223-238, June.
  • Handle: RePEc:kap:hcarem:v:27:y:2024:i:2:d:10.1007_s10729-024-09671-w
    DOI: 10.1007/s10729-024-09671-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-024-09671-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-024-09671-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:27:y:2024:i:2:d:10.1007_s10729-024-09671-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.