IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v64y2015i4p693-710.html
   My bibliography  Save this article

Optimal retesting configurations for hierarchical group testing

Author

Listed:
  • Michael S. Black
  • Christopher R. Bilder
  • Joshua M. Tebbs

Abstract

type="main" xml:id="rssc12097-abs-0001"> Hierarchical group testing is widely used to test individuals for diseases. This testing procedure works by first amalgamating individual specimens into groups for testing. Groups testing negatively have their members declared negative. Groups testing positively are subsequently divided into smaller subgroups and are then retested to search for positive individuals. We propose a new class of informative retesting procedures for hierarchical group testing that acknowledges heterogeneity among individuals. These procedures identify the optimal number of groups and their sizes at each testing stage to minimize the expected number of tests. We apply our proposals in two settings: human immunodeficiency virus testing programmes that currently use three-stage hierarchical testing and chlamydia and gonorrhoea screening practices that currently use individual testing. For both applications, we show that substantial savings can be realized by our new procedures.

Suggested Citation

  • Michael S. Black & Christopher R. Bilder & Joshua M. Tebbs, 2015. "Optimal retesting configurations for hierarchical group testing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(4), pages 693-710, August.
  • Handle: RePEc:bla:jorssc:v:64:y:2015:i:4:p:693-710
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssc.2015.64.issue-4
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2019. "Optimal Risk-Based Group Testing," Management Science, INFORMS, vol. 65(9), pages 4365-4384, September.
    2. Yaakov Malinovsky & Gregory Haber & Paul S. Albert, 2020. "An optimal design for hierarchical generalized group testing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 607-621, June.
    3. Christopher R. Bilder & Joshua M. Tebbs & Christopher S. McMahan, 2019. "Informative group testing for multiplex assays," Biometrics, The International Biometric Society, vol. 75(1), pages 278-288, March.
    4. Christopher S. McMahan & Joshua M. Tebbs & Timothy E. Hanson & Christopher R. Bilder, 2017. "Bayesian regression for group testing data," Biometrics, The International Biometric Society, vol. 73(4), pages 1443-1452, December.
    5. Daniel K. Sewell, 2022. "Leveraging network structure to improve pooled testing efficiency," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1648-1662, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:64:y:2015:i:4:p:693-710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.