IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v26y2023i2d10.1007_s10729-022-09624-1.html
   My bibliography  Save this article

Machine learning for optimal test admission in the presence of resource constraints

Author

Listed:
  • Ramy Elitzur

    (University of Toronto)

  • Dmitry Krass

    (University of Toronto)

  • Eyal Zimlichman

    (Tel Aviv University)

Abstract

Developing rapid tools for early detection of viral infection is crucial for pandemic containment. This is particularly crucial when testing resources are constrained and/or there are significant delays until the test results are available – as was quite common in the early days of Covid-19 pandemic. We show how predictive analytics methods using machine learning algorithms can be combined with optimal pre-test screening mechanisms, greatly increasing test efficiency (i.e., rate of true positives identified per test), as well as to allow doctors to initiate treatment before the test results are available. Our optimal test admission policies account for imperfect accuracy of both the medical test and the model prediction mechanism. We derive the accuracy required for the optimized admission policies to be effective. We also show how our policies can be extended to re-testing high-risk patients, as well as combined with pool testing approaches. We illustrate our techniques by applying them to a large data reported by the Israeli Ministry of Health for RT-PCR tests from March to September 2020. Our results demonstrate that in the context of the Covid-19 pandemic a pre-test probability screening tool with conventional RT-PCR testing could have potentially increased efficiency by several times, compared to random admission control.

Suggested Citation

  • Ramy Elitzur & Dmitry Krass & Eyal Zimlichman, 2023. "Machine learning for optimal test admission in the presence of resource constraints," Health Care Management Science, Springer, vol. 26(2), pages 279-300, June.
  • Handle: RePEc:kap:hcarem:v:26:y:2023:i:2:d:10.1007_s10729-022-09624-1
    DOI: 10.1007/s10729-022-09624-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-022-09624-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-022-09624-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2020. "Optimal Group Testing: Structural Properties and Robust Solutions, with Application to Public Health Screening," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 895-911, October.
    2. Douglas R Bish & Ebru K Bish & Hussein El-Hajj & Hrayer Aprahamian, 2021. "A robust pooled testing approach to expand COVID-19 screening capacity," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandra Zilker & Sven Weinzierl & Mathias Kraus & Patrick Zschech & Martin Matzner, 2024. "A machine learning framework for interpretable predictions in patient pathways: The case of predicting ICU admission for patients with symptoms of sepsis," Health Care Management Science, Springer, vol. 27(2), pages 136-167, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiayi Lin & Hrayer Aprahamian & George Golovko, 2024. "An optimization framework for large-scale screening under limited testing capacity with application to COVID-19," Health Care Management Science, Springer, vol. 27(2), pages 223-238, June.
    2. Michela Baccini & Emilia Rocco & Irene Paganini & Alessandra Mattei & Cristina Sani & Giulia Vannucci & Simonetta Bisanzi & Elena Burroni & Marco Peluso & Armelle Munnia & Filippo Cellai & Giampaolo P, 2021. "Pool testing on random and natural clusters of individuals: Optimisation of SARS-CoV-2 surveillance in the presence of low viral load samples," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-15, May.
    3. Hussein El Hajj & Douglas R. Bish & Ebru K. Bish & Denise M. Kay, 2022. "Novel Pooling Strategies for Genetic Testing, with Application to Newborn Screening," Management Science, INFORMS, vol. 68(11), pages 7994-8014, November.
    4. Hrayer Aprahamian & Vedat Verter & Manaf Zargoush, 2024. "Editorial: management science for pandemic prevention, preparedness, and response," Health Care Management Science, Springer, vol. 27(3), pages 479-482, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:26:y:2023:i:2:d:10.1007_s10729-022-09624-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.