IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i10p6677-6682.html
   My bibliography  Save this article

Global wind power potential: Physical and technological limits

Author

Listed:
  • de Castro, Carlos
  • Mediavilla, Margarita
  • Miguel, Luis Javier
  • Frechoso, Fernando

Abstract

This paper is focused on a new methodology for the global assessment of wind power potential. Most of the previous works on the global assessment of the technological potential of wind power have used bottom-up methodologies (e.g. Archer and Jacobson, 2005; Capps and Zender, 2010; Lu et al., 2009). Economic, ecological and other assessments have been developed, based on these technological capacities. However, this paper tries to show that the reported regional and global technological potential are flawed because they do not conserve the energetic balance on Earth, violating the first principle of energy conservation (Gans et al., 2010). We propose a top-down approach, such as that in Miller et al. (2010), to evaluate the physical-geographical potential and, for the first time, to evaluate the global technological wind power potential, while acknowledging energy conservation. The results give roughly 1 TW for the top limit of the future electrical potential of wind energy. This value is much lower than previous estimates and even lower than economic and realizable potentials published for the mid-century (e.g. DeVries et al., 2007; EEA, 2009; Zerta et al., 2008).

Suggested Citation

  • de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2011. "Global wind power potential: Physical and technological limits," Energy Policy, Elsevier, vol. 39(10), pages 6677-6682, October.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:10:p:6677-6682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511004836
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hermann, Weston A., 2006. "Quantifying global exergy resources," Energy, Elsevier, vol. 31(12), pages 1685-1702.
    2. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    3. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    4. Hoogwijk, Monique & de Vries, Bert & Turkenburg, Wim, 2004. "Assessment of the global and regional geographical, technical and economic potential of onshore wind energy," Energy Economics, Elsevier, vol. 26(5), pages 889-919, September.
    5. Cristina L. Archer & Ken Caldeira, 2009. "Global Assessment of High-Altitude Wind Power," Energies, MDPI, vol. 2(2), pages 1-13, May.
    6. de Vries, Bert J.M. & van Vuuren, Detlef P. & Hoogwijk, Monique M., 2007. "Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach," Energy Policy, Elsevier, vol. 35(4), pages 2590-2610, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J. & de Blas, Ignacio, 2020. "Macroeconomic modelling under energy constraints: Global low carbon transition scenarios," Energy Policy, Elsevier, vol. 137(C).
    2. Olga Shepovalova & Yuri Arbuzov & Vladimir Evdokimov & Pavel Ilyushin & Konstantin Suslov, 2023. "Assessment of the Gross, Technical and Economic Potential of Region’s Solar Energy for Photovoltaic Energetics," Energies, MDPI, vol. 16(3), pages 1-22, January.
    3. Le Fouest, Sébastien & Mulleners, Karen, 2022. "The dynamic stall dilemma for vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 198(C), pages 505-520.
    4. Capellán-Pérez, Iñigo & de Castro, Carlos & Arto, Iñaki, 2017. "Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 760-782.
    5. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J., 2018. "Less than 2°C? An Economic-Environmental Evaluation of the Paris Agreement," Ecological Economics, Elsevier, vol. 146(C), pages 69-84.
    6. Prudence Dato, 2017. "Energy Transition Under Irreversibility: A Two-Sector Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 797-820, November.
    7. Patrick Moriarty & Damon Honnery, 2019. "Energy Efficiency or Conservation for Mitigating Climate Change?," Energies, MDPI, vol. 12(18), pages 1-17, September.
    8. Ascher, William, 2021. "Rescuing responsible hydropower projects," Energy Policy, Elsevier, vol. 150(C).
    9. Ugo Bardi, 2016. "What Future for the Anthropocene? A Biophysical Interpretation," Biophysical Economics and Resource Quality, Springer, vol. 1(1), pages 1-7, August.
    10. Josefa Sánchez Contreras & Alberto Matarán Ruiz & Alvaro Campos-Celador & Eva Maria Fjellheim, 2023. "Energy Colonialism: A Category to Analyse the Corporate Energy Transition in the Global South and North," Land, MDPI, vol. 12(6), pages 1-15, June.
    11. García-Olivares, Antonio & Ballabrera-Poy, Joaquim & García-Ladona, Emili & Turiel, Antonio, 2012. "A global renewable mix with proven technologies and common materials," Energy Policy, Elsevier, vol. 41(C), pages 561-574.
    12. Huang, Junling & McElroy, Michael B., 2015. "A 32-year perspective on the origin of wind energy in a warming climate," Renewable Energy, Elsevier, vol. 77(C), pages 482-492.
    13. Ikonnikova, Svetlana A. & Scanlon, Bridget R. & Berdysheva, Sofia A., 2023. "A global energy system perspective on hydrogen Trade: A framework for the market color and the size analysis," Applied Energy, Elsevier, vol. 330(PA).
    14. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    15. de Castro, Carlos & Carpintero, Óscar & Frechoso, Fernando & Mediavilla, Margarita & de Miguel, Luis J., 2014. "A top-down approach to assess physical and ecological limits of biofuels," Energy, Elsevier, vol. 64(C), pages 506-512.
    16. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    17. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.
    18. Pottmaier, D. & Melo, C.R. & Sartor, M.N. & Kuester, S. & Amadio, T.M. & Fernandes, C.A.H. & Marinha, D. & Alarcon, O.E., 2013. "The Brazilian energy matrix: From a materials science and engineering perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 678-691.
    19. Barnea, Gil & Hagemann, Christian & Wurster, Stefan, 2022. "Policy instruments matter: Support schemes for renewable energy capacity in worldwide comparison," Energy Policy, Elsevier, vol. 168(C).
    20. Mediavilla, Margarita & de Castro, Carlos & Capellán, Iñigo & Javier Miguel, Luis & Arto, Iñaki & Frechoso, Fernando, 2013. "The transition towards renewable energies: Physical limits and temporal conditions," Energy Policy, Elsevier, vol. 52(C), pages 297-311.
    21. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2013. "Global solar electric potential: A review of their technical and sustainable limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 824-835.
    22. Vasseur, Véronique & Kemp, René, 2015. "The adoption of PV in the Netherlands: A statistical analysis of adoption factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 483-494.
    23. Solé, Jordi & García-Olivares, Antonio & Turiel, Antonio & Ballabrera-Poy, Joaquim, 2018. "Renewable transitions and the net energy from oil liquids: A scenarios study," Renewable Energy, Elsevier, vol. 116(PA), pages 258-271.
    24. Efstathios E. Michaelides, 2021. "Thermal Storage for District Cooling—Implications for Renewable Energy Transition," Energies, MDPI, vol. 14(21), pages 1-13, November.
    25. Kaldellis, J.K. & Kapsali, M., 2013. "Shifting towards offshore wind energy—Recent activity and future development," Energy Policy, Elsevier, vol. 53(C), pages 136-148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bossavy, Arthur & Girard, Robin & Kariniotakis, Georges, 2016. "Sensitivity analysis in the technical potential assessment of onshore wind and ground solar photovoltaic power resources at regional scale," Applied Energy, Elsevier, vol. 182(C), pages 145-153.
    2. Mahtta, Richa & Joshi, P.K. & Jindal, Alok Kumar, 2014. "Solar power potential mapping in India using remote sensing inputs and environmental parameters," Renewable Energy, Elsevier, vol. 71(C), pages 255-262.
    3. Akdag, Seyit Ahmet & Güler, Önder, 2010. "Evaluation of wind energy investment interest and electricity generation cost analysis for Turkey," Applied Energy, Elsevier, vol. 87(8), pages 2574-2580, August.
    4. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.
    5. Arias-Gaviria, Jessica & Osorio, Andres F. & Arango-Aramburo, Santiago, 2020. "Estimating the practical potential for deep ocean water extraction in the Caribbean," Renewable Energy, Elsevier, vol. 150(C), pages 307-319.
    6. kos Hamburger & G bor Harangoz, 2018. "Factors Affecting the Evolution of Renewable Electricity Generating Capacities: A Panel Data Analysis of European Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 161-172.
    7. Angelis-Dimakis, Athanasios & Biberacher, Markus & Dominguez, Javier & Fiorese, Giulia & Gadocha, Sabine & Gnansounou, Edgard & Guariso, Giorgio & Kartalidis, Avraam & Panichelli, Luis & Pinedo, Irene, 2011. "Methods and tools to evaluate the availability of renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1182-1200, February.
    8. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    9. Fouz, D.M. & Carballo, R. & Ramos, V. & Iglesias, G., 2019. "Hydrokinetic energy exploitation under combined river and tidal flow," Renewable Energy, Elsevier, vol. 143(C), pages 558-568.
    10. Dupré la Tour, Marie-Alix, 2023. "Photovoltaic and wind energy potential in Europe – A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    11. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    12. Mercure, Jean-François & Salas, Pablo, 2013. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Energy Policy, Elsevier, vol. 63(C), pages 469-483.
    13. Mentis, Dimitrios & Siyal, Shahid Hussain & Korkovelos, Alexandros & Howells, Mark, 2016. "A geospatial assessment of the techno-economic wind power potential in India using geographical restrictions," Renewable Energy, Elsevier, vol. 97(C), pages 77-88.
    14. Kaldellis, J.K. & Kapsali, M., 2013. "Shifting towards offshore wind energy—Recent activity and future development," Energy Policy, Elsevier, vol. 53(C), pages 136-148.
    15. Mercure, Jean-François & Salas, Pablo, 2012. "An assessement of global energy resource economic potentials," Energy, Elsevier, vol. 46(1), pages 322-336.
    16. Buckman, Greg & Diesendorf, Mark, 2009. "The Future of Renewable Electricity in Australia," Research Reports 94879, Australian National University, Environmental Economics Research Hub.
    17. Jean-Francois Mercure & Pablo Salas, 2013. "An assessment of energy resources for global decarbonisation," 4CMR Working Paper Series 002, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    18. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2013. "Global solar electric potential: A review of their technical and sustainable limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 824-835.
    19. Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "Curtailment in a Highly Renewable Power System and Its Effect on Capacity Factors," Energies, MDPI, vol. 9(7), pages 1-18, June.
    20. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:10:p:6677-6682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.