IDEAS home Printed from https://ideas.repec.org/a/kap/empiri/v47y2020i4d10.1007_s10663-019-09464-3.html
   My bibliography  Save this article

An analysis of systemic risk in worldwide economic sentiment indices

Author

Listed:
  • Thomas Lux

    (University of Kiel)

  • Duc Thi Luu

    (University of Kiel)

  • Boyan Yanovski

    (Potsdam Institute for Climate Impact Research)

Abstract

We investigate the temporal dynamics of correlations between sentiment indices worldwide. Employing the tools of Random Matrix Theory (RMT) and Principal Component Analysis (PCA), our paper aims to extract latent information embedded in the interactions between economic and business sentiment indices around the world. We find that: (1) the dynamics of the sentiment indices across countries can be well explained by the evolution of a single factor (the “market mode”); (2) during most periods, some groups of countries exhibit sentiment dynamics less associated with (or divergent from) the market mode, while (3) during the financial crisis, no country or group of countries has been able to escape the market mode, which accounts for almost all movements in the indices. We argue that strong “global” information signals, like the collapse of the US housing market in 2007, can lead to a homogenization of the expectation structure around the world, as such information can provide a coordination signal for a global phase of low confidence.

Suggested Citation

  • Thomas Lux & Duc Thi Luu & Boyan Yanovski, 2020. "An analysis of systemic risk in worldwide economic sentiment indices," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(4), pages 909-928, November.
  • Handle: RePEc:kap:empiri:v:47:y:2020:i:4:d:10.1007_s10663-019-09464-3
    DOI: 10.1007/s10663-019-09464-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10663-019-09464-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10663-019-09464-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Artis & George Chouliarakis & P. K. G. Harischandra, 2011. "Business Cycle Synchronization Since 1880," Manchester School, University of Manchester, vol. 79(2), pages 173-207, March.
    2. J. P. Bouchaud & M. Potters, 2009. "Financial Applications of Random Matrix Theory: a short review," Papers 0910.1205, arXiv.org.
    3. Hyman P. Minsky, 1977. "The Financial Instability Hypothesis: An Interpretation of Keynes and an Alternative to“Standard” Theory," Challenge, Taylor & Francis Journals, vol. 20(1), pages 20-27, March.
    4. Dong-Hee Kim & Hawoong Jeong, 2005. "Systematic analysis of group identification in stock markets," Papers physics/0503076, arXiv.org, revised Oct 2005.
    5. Ormerod, Paul, 2008. "Random Matrix Theory and the Evolution of Business Cycle Synchronisation, 1886-2006," Economics Discussion Papers 2008-11, Kiel Institute for the World Economy (IfW Kiel).
    6. Karl Taylor & Robert McNabb, 2007. "Business Cycles and the Role of Confidence: Evidence for Europe," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(2), pages 185-208, April.
    7. Pukthuanthong, Kuntara & Roll, Richard, 2009. "Global market integration: An alternative measure and its application," Journal of Financial Economics, Elsevier, vol. 94(2), pages 214-232, November.
    8. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    9. Ormerod, Paul & Mounfield, Craig, 2002. "The convergence of European business cycles 1978–2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 307(3), pages 494-504.
    10. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    11. Andrea Carriero & Massimiliano Marcellino, 2011. "Sectoral Survey‐based Confidence Indicators for Europe," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(2), pages 175-206, April.
    12. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    13. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    14. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    15. Filippo Ferroni & Benjamin Klaus, 2015. "Euro Area business cycles in turbulent times: convergence or decoupling?," Applied Economics, Taylor & Francis Journals, vol. 47(34-35), pages 3791-3815, July.
    16. Milani, Fabio, 2017. "Sentiment and the U.S. business cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 289-311.
    17. Michael D. Bordo & Thomas F. Helbling, 2011. "International Business Cycle Synchronization In Historical Perspective," Manchester School, University of Manchester, vol. 79(2), pages 208-238, March.
    18. Uechi, Lisa & Akutsu, Tatsuya & Stanley, H. Eugene & Marcus, Alan J. & Kenett, Dror Y., 2015. "Sector dominance ratio analysis of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 488-509.
    19. Arghyrou, Michael G. & Gregoriou, Andros & Kontonikas, Alexandros, 2009. "Do real interest rates converge? Evidence from the European union," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 447-460, July.
    20. E. Philip Howrey, 2001. "The Predictive Power of the Index of Consumer Sentiment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 32(1), pages 175-216.
    21. Ormerod, Paul, 2008. "Random Matrix Theory and Macro-Economic Time-Series: An Illustration Using the Evolution of Business Cycle Synchronisation, 1886-2006," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 2, pages 1-10.
    22. X. F. Jiang & T. T. Chen & B. Zheng, 2014. "Structure of local interactions in complex financial dynamics," Papers 1406.0070, arXiv.org.
    23. Bas Aarle & Marcus Kappler, 2012. "Economic sentiment shocks and fluctuations in economic activity in the euro area and the USA," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 47(1), pages 44-51, January.
    24. Ayhan Kose, M. & Otrok, Christopher & Whiteman, Charles H., 2008. "Understanding the evolution of world business cycles," Journal of International Economics, Elsevier, vol. 75(1), pages 110-130, May.
    25. Marija Kuzmanovic & Peter Sanfey, 2013. "Can Consumer Confidence Data Predict Real Variables? Evidence from Croatia," Croatian Economic Survey, The Institute of Economics, Zagreb, vol. 15(1), pages 5-24, April.
    26. Lo, Andrew W & Wang, Jiang, 2000. "Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 257-300.
    27. Laurent Laloux & Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Random Matrix Theory And Financial Correlations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 391-397.
    28. Fabio Milani, 2011. "Expectation Shocks and Learning as Drivers of the Business Cycle," Economic Journal, Royal Economic Society, vol. 121(552), pages 379-401, May.
    29. Teresa Santero & Niels Westerlund, 1996. "Confidence Indicators and Their Relationship to Changes in Economic Activity," OECD Economics Department Working Papers 170, OECD Publishing.
    30. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2019. "Identification of Global and Local Shocks in International Financial Markets via General Dynamic Factor Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(3), pages 462-494.
    31. M.C. M�nnix & R. Sch�fer & O. Grothe, 2014. "Estimating correlation and covariance matrices by weighting of market similarity," Quantitative Finance, Taylor & Francis Journals, vol. 14(5), pages 931-939, May.
    32. Atsuo Utaka, 2003. "Confidence and the real economy - the Japanese case," Applied Economics, Taylor & Francis Journals, vol. 35(3), pages 337-342.
    33. Nobi, Ashadun & Lee, Jae Woo, 2016. "State and group dynamics of world stock market by principal component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 85-94.
    34. Annabelle Mourougane & Moreno Roma, 2003. "Can confidence indicators be useful to predict short term real GDP growth?," Applied Economics Letters, Taylor & Francis Journals, vol. 10(8), pages 519-522.
    35. Michael D. Bordo & Thomas Helbling, 2003. "Have National Business Cycles Become More Synchronized?," NBER Working Papers 10130, National Bureau of Economic Research, Inc.
    36. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    37. Duan Wang & Boris Podobnik & Davor Horvati'c & H. Eugene Stanley, 2011. "Quantifying and Modeling Long-Range Cross-Correlations in Multiple Time Series with Applications to World Stock Indices," Papers 1102.2240, arXiv.org.
    38. George A. Akerlof & Robert J. Shiller, 2010. "Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism," Economics Books, Princeton University Press, edition 1, number 9163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guido Macas-Acosta & Genesis Macas-Lituma & Arnaldo Vergara-Romero, 2022. "The Internal and External Factors That Determined Private Investment in Ecuador 2007–2020," Economies, MDPI, vol. 10(10), pages 1-11, October.
    2. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luu, Duc Thi & Yanovski, Boyan & Lux, Thomas, 2018. "An analysis of systematic risk in worldwide econonomic sentiment indices," Economics Working Papers 2018-03, Christian-Albrechts-University of Kiel, Department of Economics.
    2. Mattia Guerini & Duc Thi Luu & Mauro Napoletano, 2023. "Synchronization patterns in the European Union," Applied Economics, Taylor & Francis Journals, vol. 55(18), pages 2038-2059, April.
    3. repec:hal:spmain:info:hdl:2441/5q8fnecj1u87ka099dc571bhi2 is not listed on IDEAS
    4. repec:spo:wpmain:info:hdl:2441/5q8fnecj1u87ka099dc571bhi2 is not listed on IDEAS
    5. Duc Thi Luu, 2022. "Portfolio Correlations in the Bank-Firm Credit Market of Japan," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 529-569, August.
    6. David Matesanz Gomez & Guillermo J. Ortega & Benno Torgler, 2011. "Measuring globalization: A hierarchical network approach," CREMA Working Paper Series 2011-11, Center for Research in Economics, Management and the Arts (CREMA).
    7. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    8. David Matesanz Gomez & Benno Torgler & Guillermo J. Ortega, 2013. "Measuring Global Economic Interdependence: A Hierarchical Network Approach," The World Economy, Wiley Blackwell, vol. 36(12), pages 1632-1648, December.
    9. Sudeshna Ghosh, 2021. "Consumer Confidence and Consumer Spending in Brazil: A Nonlinear Autoregressive Distributed Lag Model Analysis," Arthaniti: Journal of Economic Theory and Practice, , vol. 20(1), pages 53-85, June.
    10. N. Antonakakis & H. Badinger, 2014. "International business cycle spillovers since the 1870s," Applied Economics, Taylor & Francis Journals, vol. 46(30), pages 3682-3694, October.
    11. Lenka Mynaříková & Vít Pošta, 2023. "The Effect of Consumer Confidence and Subjective Well-being on Consumers’ Spending Behavior," Journal of Happiness Studies, Springer, vol. 24(2), pages 429-453, February.
    12. Lukas Berend & Jan Pruser, 2024. "The Transmission of Monetary Policy via Common Cycles in the Euro Area," Papers 2410.05741, arXiv.org, revised Oct 2024.
    13. Jackson, Laura E. & Owyang, Michael T. & Zubairy, Sarah, 2018. "Debt and stabilization policy: Evidence from a Euro Area FAVAR," Journal of Economic Dynamics and Control, Elsevier, vol. 93(C), pages 67-91.
    14. Tetsuya Takaishi, 2016. "Dynamical cross-correlation of multiple time series Ising model," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 455-468, December.
    15. Uju Violet Alola & Darya Baeva & Andrew Adewale Alola, 2023. "Determining the (A)symmetric Role of Business–Consumer Confidence in Outward–Inward Tourism in Russia: A Competitiveness Perspective," International Journal of Global Business and Competitiveness, Springer, vol. 18(1), pages 22-34, June.
    16. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    17. Sudeshna Ghosh, 2021. "Business Confidence and Business Tourism in Japan," Journal of International Commerce, Economics and Policy (JICEP), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-23, February.
    18. Matthias Morys & Martin Ivanov, 2015. "The emergence of a European region: business cycles in South-East Europe from political independence to World War II," European Review of Economic History, European Historical Economics Society, vol. 19(4), pages 382-411.
    19. Erdenebat Bataa & Denise R. Osborn & Marianne Sensier & Dick van Dijk, 2009. "Changes in International Business Cycle Affiliations," Economics Discussion Paper Series 0924, Economics, The University of Manchester.
    20. Yetman, James, 2011. "Exporting recessions: International links and the business cycle," Economics Letters, Elsevier, vol. 110(1), pages 12-14, January.
    21. Ramalho, Esmeralda A. & Caleiro, António & Dionfsio, Andreia, 2011. "Explaining consumer confidence in Portugal," Journal of Economic Psychology, Elsevier, vol. 32(1), pages 25-32, February.
    22. Ouyang, Fang-Yan & Zheng, Bo & Jiang, Xiong-Fei, 2019. "Dynamic fluctuations of cross-correlations in multi-time scale," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 515-521.

    More about this item

    Keywords

    Sentiment index; Correlation; Financial crisis; Random matrix theory; Principal component analysis;
    All these keywords.

    JEL classification:

    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E71 - Macroeconomics and Monetary Economics - - Macro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on the Macro Economy
    • G01 - Financial Economics - - General - - - Financial Crises

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:empiri:v:47:y:2020:i:4:d:10.1007_s10663-019-09464-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.