IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v459y2016icp55-67.html
   My bibliography  Save this article

Volatility and correlation-based systemic risk measures in the US market

Author

Listed:
  • Civitarese, Jamil

Abstract

This paper deals with the problem of how to use simple systemic risk measures to assess portfolio risk characteristics. Using three simple examples taken from previous literature, one based on raw and partial correlations, another based on the eigenvalue decomposition of the covariance matrix and the last one based on an eigenvalue entropy, a Granger-causation analysis revealed some of them are not always a good measure of risk in the S&P 500 and in the VIX. The measures selected do not Granger-cause the VIX index in all windows selected; therefore, in the sense of risk as volatility, the indicators are not always suitable. Nevertheless, their results towards returns are similar to previous works that accept them. A deeper analysis has shown that any symmetric measure based on eigenvalue decomposition of correlation matrices, however, is not useful as a measure of “correlation” risk. The empirical counterpart analysis of this proposition stated that negative correlations are usually small and, therefore, do not heavily distort the behavior of the indicator.

Suggested Citation

  • Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
  • Handle: RePEc:eee:phsmap:v:459:y:2016:i:c:p:55-67
    DOI: 10.1016/j.physa.2016.03.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116300930
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.03.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shukla, Ravi & Trzcinka, Charles, 1990. "Sequential Tests of the Arbitrage Pricing Theory: A Comparison of Principal Components and Maximum Likelihood Factors," Journal of Finance, American Finance Association, vol. 45(5), pages 1541-1564, December.
    2. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    3. Nicola Cetorelli, 1999. "Competitive analysis in banking: appraisal of the methodologies," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q I), pages 2-15.
    4. Diks Cees & Panchenko Valentyn, 2005. "A Note on the Hiemstra-Jones Test for Granger Non-causality," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-9, June.
    5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    6. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    7. Dror Y Kenett & Matthias Raddant & Thomas Lux & Eshel Ben-Jacob, 2012. "Evolvement of Uniformity and Volatility in the Stressed Global Financial Village," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    8. Y. Shapira & D. Y. Kenett & E. Ben-Jacob, 2009. "The Index cohesive effect on stock market correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 72(4), pages 657-669, December.
    9. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Systemic Risk and Stability in Financial Networks," American Economic Review, American Economic Association, vol. 105(2), pages 564-608, February.
    10. Christian Capuano, 2008. "The Option-iPoD," IMF Working Papers 2008/194, International Monetary Fund.
    11. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    12. Anna Zaremba & Tomaso Aste, 2014. "Measures of Causality in Complex Datasets with application to financial data," Papers 1401.1457, arXiv.org, revised Jun 2014.
    13. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    14. Franklin Allen & Douglas Gale, 2000. "Financial Contagion," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 1-33, February.
    15. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, October.
    16. Roll, Richard & Ross, Stephen A, 1980. "An Empirical Investigation of the Arbitrage Pricing Theory," Journal of Finance, American Finance Association, vol. 35(5), pages 1073-1103, December.
    17. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    18. Bonanno, Giovanni & Lillo, Fabrizio & Mantegna, Rosario N., 2001. "Levels of complexity in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 16-27.
    19. Dimitrios Bisias & Mark Flood & Andrew W. Lo & Stavros Valavanis, 2012. "A Survey of Systemic Risk Analytics," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 255-296, October.
    20. A. S. Lewis, 1996. "Derivatives of Spectral Functions," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 576-588, August.
    21. Glasserman, Paul & Young, H. Peyton, 2015. "How likely is contagion in financial networks?," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 383-399.
    22. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    23. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    24. Dong-Ming Song & Michele Tumminello & Wei-Xing Zhou & Rosario N. Mantegna, 2011. "Evolution of worldwide stock markets, correlation structure and correlation based graphs," Papers 1103.5555, arXiv.org.
    25. Dror Y Kenett & Yoash Shapira & Asaf Madi & Sharron Bransburg-Zabary & Gitit Gur-Gershgoren & Eshel Ben-Jacob, 2011. "Index Cohesive Force Analysis Reveals That the US Market Became Prone to Systemic Collapses Since 2002," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-8, April.
    26. Uechi, Lisa & Akutsu, Tatsuya & Stanley, H. Eugene & Marcus, Alan J. & Kenett, Dror Y., 2015. "Sector dominance ratio analysis of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 488-509.
    27. Duan Wang & Boris Podobnik & Davor Horvati'c & H. Eugene Stanley, 2011. "Quantifying and Modeling Long-Range Cross-Correlations in Multiple Time Series with Applications to World Stock Indices," Papers 1102.2240, arXiv.org.
    28. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    29. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    30. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    31. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    32. Zhang, Xin & Podobnik, Boris & Kenett, Dror Y. & Eugene Stanley, H., 2014. "Systemic risk and causality dynamics of the world international shipping market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 43-53.
    33. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    34. Caraiani, Petre, 2014. "The predictive power of singular value decomposition entropy for stock market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 571-578.
    35. Patro, Dilip K. & Qi, Min & Sun, Xian, 2013. "A simple indicator of systemic risk," Journal of Financial Stability, Elsevier, vol. 9(1), pages 105-116.
    36. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    37. Paul Glasserman & Peyton Young, 2015. "Contagion in Financial Networks," Economics Series Working Papers 764, University of Oxford, Department of Economics.
    38. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    39. Laurent Laloux & Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Random Matrix Theory And Financial Correlations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 391-397.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borbála Szüle, 2019. "Systemic Risk Dimensions in the Hungarian Banking and Insurance Sector," Public Finance Quarterly, State Audit Office of Hungary, vol. 64(2), pages 260-276.
    2. Omid Farkhondeh Rouz & Hossein Sohrabi Vafa & Arash Sioofy Khoojine & Sajjad Pashay Amiri, 2024. "Interconnectedness of systemic risk in the Chinese economy: the Granger causality and CISS indicator approach," Risk Management, Palgrave Macmillan, vol. 26(2), pages 1-24, May.
    3. Song, Jianhua & Zhang, Zhepei & So, Mike K.P., 2021. "On the predictive power of network statistics for financial risk indicators," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    4. Chen, Guojin & Liu, Yanzhen & Zhang, Yu, 2021. "Systemic risk measures and distribution forecasting of macroeconomic shocks," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 178-196.
    5. Nie, Chun-Xiao & Song, Fu-Tie, 2023. "Stable versus fragile community structures in the correlation dynamics of Chinese industry indices," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    6. Silva, Walmir & Kimura, Herbert & Sobreiro, Vinicius Amorim, 2017. "An analysis of the literature on systemic financial risk: A survey," Journal of Financial Stability, Elsevier, vol. 28(C), pages 91-114.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heckens, Anton J. & Guhr, Thomas, 2022. "New collectivity measures for financial covariances and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Hué, Sullivan & Lucotte, Yannick & Tokpavi, Sessi, 2019. "Measuring network systemic risk contributions: A leave-one-out approach," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 86-114.
    4. Raddant, Matthias & Kenett, Dror Y., 2021. "Interconnectedness in the global financial market," Journal of International Money and Finance, Elsevier, vol. 110(C).
    5. Anufriev, Mikhail & Panchenko, Valentyn, 2015. "Connecting the dots: Econometric methods for uncovering networks with an application to the Australian financial institutions," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 241-255.
    6. Gu, Rongbao & Shao, Yanmin, 2016. "How long the singular value decomposed entropy predicts the stock market? — Evidence from the Dow Jones Industrial Average Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 150-161.
    7. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    8. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    9. Germán G. Creamer & Tal Ben-Zvi, 2021. "Volatility and Risk in the Energy Market: A Trade Network Approach," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    10. Sullivan HUE & Yannick LUCOTTE & Sessi TOKPAVI, 2018. "Measuring Network Systemic Risk Contributions: A Leave-one-out Approach," LEO Working Papers / DR LEO 2608, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    11. Daniel Felix Ahelegbey, 2015. "The Econometrics of Networks: A Review," Working Papers 2015:13, Department of Economics, University of Venice "Ca' Foscari".
    12. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    13. Song, Jianhua & Zhang, Zhepei & So, Mike K.P., 2021. "On the predictive power of network statistics for financial risk indicators," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    14. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2014. "Partial correlation analysis: Applications for financial markets," Papers 1402.1405, arXiv.org.
    15. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.
    16. Uechi, Lisa & Akutsu, Tatsuya & Stanley, H. Eugene & Marcus, Alan J. & Kenett, Dror Y., 2015. "Sector dominance ratio analysis of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 488-509.
    17. Irena Vodenska & Alexander P. Becker & Di Zhou & Dror Y. Kenett & H. Eugene Stanley & Shlomo Havlin, 2016. "Community Analysis of Global Financial Markets," Risks, MDPI, vol. 4(2), pages 1-15, May.
    18. Caraiani, Petre, 2017. "The predictive power of local properties of financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 79-90.
    19. Silva, Walmir & Kimura, Herbert & Sobreiro, Vinicius Amorim, 2017. "An analysis of the literature on systemic financial risk: A survey," Journal of Financial Stability, Elsevier, vol. 28(C), pages 91-114.
    20. Yonatan Berman & Eshel Ben-Jacob & Xin Zhang & Yoash Shapira, 2016. "Analyzing the Long Term Cohesive Effect of Sector Specific Driving Forces," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:459:y:2016:i:c:p:55-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.